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SUMMARY

The NASA-U4LMSC Electrolytic Oxygen Generator which was provided by 2LMSC

as the back-up water electrolysis system for the NASA-McDonnell Douglas (MDAC)

90-Day Manned Test was refurbished, improved and subjected to a 182-day bench

test at the MDAC facility in Huntington Beach, California.

Prior to delivery of the system to the test site, a program effort was

accomplished which consisted of re-assembly and installation of components (all

components with the exception of the electronics had been disassembled for post-

test evaluation after the 90-Day Test), incorporation of design improvements

indicated by the results of the 90-Day Test, performance of a 50-hour checkout

and 100-hour acceptance test, and documentation of the system configuration,

operating instructions and test results.

The test plan for the 182-Day Test at MDAC required system operation at

the nominal design point (3.63 kg/day (8 lb/day) oxygen output) except for a

one week period of orbital simulation and a five-week period at the maximum

design oxygen output rate of 4.55 kg/day (10 lb/day). All of these test condi-

tions were successfully met by the system.

The system operated for 160 cumulative days of the 182-Day Test period

(88 percent on time) and was shut down on weekends or awaiting replacement parts

for 10 days. The remaining 12 days of normal working shift (96 hours) were

required for fault diagnosis and repairs. The system was shut down a total

of 24 times, 13 times because of primary failures or malfunctions, and ll times

for diagnostic purposes. Over half of the total number of shutdowns and two-

thirds of the primary shutdowns were related to an intermittent malfunction of

a single electronic component. No cell or module failures of any kind occurred,

and no shutdowns were caused by interface problems or operator error.

The performance of the system during the test demonstrated the soundness

of the basic electrolysis concept, the high development status of the automatic

controls which allowed completely hands-off operation, and the capability for

orbital operation. The following design improvements were indicated by the

test experience:

xi



o Develop a more efficient control device for the electrolysis

module power.

o Utilize high reliability electronic components and more

rigorous quality control in future hardware programs.

o Incorporate a modular maintenance concept in the design,

utilizing completely internal manifolding of the liquid

electrolyte to prevent ambient exposure during maintenance

or repair.

xii



Section 1

INTRODUCTION

Lockheed Missiles and Space Company (LMSC), under NASA-Langley Research

Center Contract NAS 1-9728, provided a water electrolysis system in 1970 as a

back-up for the primary system in the NASA-McDonnell Douglas 90-Day Manned Test

(NAS 1-8997). This system, the NASA-LMSC Electrolytic Oxygen Generator, was

designed, fabricated, acceptance tested, and delivered to the MDAC site in a

four-month period. The system was located outside the manned chamber but was

integrated to the extent that it used chamber water, provided hydrogen to the

chamber accumulator and oxygen via chamber accumulator to the four-man crew. It

operated successfully for 70 days of the 90-Day Test as the primary system

supplying the manned chamber.

At the conclusion of the 90-Day Test, the system was returned to I4SC

for post-test evaluation. It was then completely disassembled, excepting

electronics, to examine for wear or corrosion of components.

After the results of the 90-Day Testwere published, 1 '2' 3 '
4 the question

existed of whether the 70 days of successful operation of the LKSC system outside

the chamber could be directly compared with less than 100 hours of operation of

the primary unit installed inside the chamber. The difference in accessibility

to trained personnel for diagnosis and repair seemed to preclude a direct

comparison of hardware maturity of the two systems.

Two contracts were then awarded: the present contract, to LMSC, to

refurbish the Electrolytic Oxygen Generator and provide field support for long

duration testing, and the other to MDAC, Contract NAS 9-12048, to complete the

checkout testing of the static vapor-feed electrolysis system (which was in-

stalled inside the chamber for the 90-Day Manned Test), and to conduct a 182-

Day bench test of the two competing systems at the MDAC facility.

1



This report describes the results of the program effort conducted by

LMSC to build the Electrolytic Oxygen Generator, incorporate specific design

improvements, make modifications necessary to meet the new test interface and

operating conditions, conduct checkout testing, produce documentation of

configuration changes, and provide field support at MDAC for the duration of

the 182-Day Test. All of the program effort leading up to hardware delivery

was completed in less than four months. The report documents performance

results of the 18 2 -Day Test (for the I24SC system only), an analysis of these

results, and conclusions and recommendations for future spacecraft system

designs.

2



Section 2

SYSTEM DESCRIPTION

2.1 INTRODUCTION

The NASA-LMSC Electrolytic Oxygen Generator as configured for the 182-

Day Test at McDonnell Douglas is described in this section. The unit is designed

to be operated in a completely automatic mode, including startup, shutdown, and

safety shutdown with limited fault diagnosis. Ninety-three channels of system

data are provided at the unit interface. Oxygen production rate is variable

from 0 to 4.55 kg/day (10 lb/day). The outside dimensions of the system closure

are 0.61 m (24 in.) across the front panel, 0.56 m (22 in.) high, and 0.79 m

(31 in.) deep.

2.2 LECTROMECHANICAL COMPONENTS

A schematic of the Electrolytic Oxygen Generator system is shown in

Figure 1. The concepts employed in the system design include the use of dual-

matrix, liquid center electrolysis cells with a circulating 30% potassium

hydroxide electrolyte.

2.2.1 Electrolysis Modules

The generating unit consists of four electrolysis modules, each containing

16 cells connected hydraulically in parallel and divided electrically into two

8-cell banks. Cells within an 8-cell electrical bank are connected in series.

Peripheral manifolding within the module provides separate paths for electrolyte

circulation, oxygen and hydrogen discharge, and nitrogen purge. Differential

pressure control is used to maintain gas-liquid phase separation across absorbent

matrices contiguous to the electrodes.

2.2.2 Electrolyte Circulation

Electrolyte is pumped through a circulation loop using one of two in-line

magnetic-coupled centrifugal pumps; the second pump is an in-line spare. The

electrolyte leaving the pump passes through the tube side of a shell-and-tube

heat exchanger. Coolant supplied to the shell side removes waste heat generated

in the electrolysis modules. The electrolyte flow is split at a set of flow-

meters into four paths leading to the electrolysis modules. Flow control valves

3
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in these lines are used to balance the flowmeters. Valves in the discharge

electrolyte lines from the modules are provided so that a disabled module

can be isolated from the circulation loop. During normal operation, these

discharge valves are fully open.

Downstream of the discharge valves, the electrolyte is manifolded

together and enters the electrolyte reservoir to be returned to the pump.

Water feed for the electrolysis process is supplied by direct injection

of liquid water into the reservoir. A flow control valve provides the proper

feed rate and a solenoid valve is actuated when feed is required.

2.2.3 Oxygen and Hydrogen Delivery

Hydrogen and oxygen are delivered from the electrolysis modules at

approximately 10.35 kN/m2 (1.5 psig).

2.2.4 Nitrogen Purge

Nitrogen purge is provided to maintain gas-liquid differential pressure

during startup and interim shutdown. When this function is actuated, either

manually or automatically during safety shutdown, inlet and outlet solenoid

valves in the hydrogen and oxygen discharge lines open, allowing nitrogen to

flow through the oxygen and hydrogen chambers of the electrolysis modules. A

micrometer valve is used to adjust the nitrogen flow rate.

2.3 AUTOMATIC CONTROLS

The Electrolytic Oxygen Generator is designed to function in an auto-

matic mode during normal operation. Startup and shutdown can be accomplished

either manually or automatically. The individual control functions are des-

cribed in the following paragraphs.

2.3.1 Automatic Startup and Shutdown

The automatic startup feature performs the following functions in a

sequential manner. It turns on the electrolyte pump, resets the system, enables

all automatic safety shutdown functions, commands the high, low, and automatic

current modes to the modules, and enables the automatic water feed system.

The automatic startup is controlled by the use of an electronic digital

counter. 

5



The digital counter consists of a 10 pps pulse oscillator which is

enabled upon actuation of the "start" push-button switch. The oscillator

output signal is fed to the input of a divide by one hundred BCD counter of

which the output pulse rate is 1/10 pps on one pulse every 10 seconds. This

signal is used to strobe a "one" bit into a seven bit serial write/parallel

read shift register. Thus, at t(o) "1" is written into bit position zero of

the register. At t(0o) the "1" bit is shifted into bit position one and

another "1" bit is written into bit position zero. This process continues

at ten second intervals until the register is full of "ones". In the auto-

matic mode, the parallel outputs of the register provide command signals to

operate the necessary components within the electrolysis system. Table 1

illustrates the auto start-up sequence of events.

2.3.2 Temperature Control

Control of the electrolyte temperature, necessary because of the waste

heat generated in the electrolysis reaction, is accomplished by using a thermo-

stat in the electrolyte discharge line from the modules to provide a control

signal to a coolant solenoid valve. On demand, the solenoid valve opens to

allow coolant to flow through the electrolyte heat exchanger. The flow rate

is set by a flow control valve. Control of the electrolyte temperature also

provides control of the dewpoints of the generated oxygen and hydrogen. The

thermostat provided in the Electrolyte Oxygen Generator has a switch closure

setting of 24°C (75°F). During normal operation, the dewpoint of the product

oxygen will be no greater than 24°C (75°F); the hydrogen dewpoint will be

approximately 50C (41°F).

Coolant flow to the electronics cold plate is controlled to maintain

25°C (77°F) and is regulated with an electrically actuated flow control valve.

2.3.3 Water Feed System

Water balance in the circulating electrolyte is maintained by controlling

the electrolyte volume. A pressure transducer in the reservoir senses the liquid

head and provides the signal to actuate the water feed control. A water feed

cycle occurs as follows: water is consumed in the electrolysis modules causing

the liquid level in the reservoir to drop. When the level reaches the bottom

6



TABLE 1

AUTO STARTUP SEQUENCE OF EVENTS

* The purpose of this function is to guarantee that the system is
in a reset condition prior to the application of module current.
If any of the safety limits are exceeded at this time, the system
will not reset and the unit will automatically shut down.

Time Event
l.....~iiiii

t(o) () e Safety Override

* Electrolyte pump on

t(10) * Reset system *

* Enable all system safeties

t(20) * Low mode module current on

* Turn off purge

t(30) * High mode module current on

t(40)

t(5°) * Transfer current mode to automatic

t(60) Enable automatic water feed system.



of the control band, the water feed solenoid valve opens; and the 12-second

water feed timer starts. Twelve seconds is the maximum feed time; the flow

control valve is set to deliver sufficient water in approximately seven seconds.

As water is fed to the reservoir, the liquid level rises and reaches the top of

the control band. At this point, the solenoid valve closes, the 12-second timer

resets, and a 10-minute timer starts. During this 10-minute period, the water

feed signal is overriden so that another water feed cannot occur until the

timer resets.

The feed water supplied to the system passes through an ion canister

containing approximately 0.69 kg (1-1/2 pounds) of mixed anion-cation exchange

resin. The outlet of the canister contains a particulate filter.

2.3.4 Differential Pressure

Two differential pressure controllers mounted on each module are set to

control the hydrogen and oxygen pressures at 6.22 kN/m (25 in. E2 0) above the

electrolyte pressure in order to maintain gas-liquid phase separation. Each AP

controller is essentially a valve in operating principle with a spring loaded

valve stem attached to a rolling diaphram. The valve seat is adjusted so that

6.22 kN/m2 (25 in. H2 0) higher pressure on the gas side of the diaphram than on

the liquid side is required to overcome the spring and open the valve.

2.3.5 Current Regulation and Oxygen Output Control

Each electrolysis module is provided with a current controlled switching

regulator to control the DC current input. Oxygen output is a direct function of

the current value. The current value is selected by digital command (positive

digital logic) according to the following:

Control Signals

A B C
(on-off) (high-low) (standby) Current Amperes

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 4.5
1 0 1 4.5
1 1 0 12.0
1 1 1 Undefined

8



These currents are maintained over a module voltage range of 13.5 to 17.5

volts and a supply voltage range of 25 - 31 volts with an efficiency greater than

75%-

Module 4 is the only module which can be operated in the Standby Mode. In

this mode, it can only be operated at the low current value. In the on-mode, all

modules can be manually operated at either high or low current. In the normal

automatic mode of operation, an external signal determines the high or low

current value.

The current controlled switching regulation consists of a control circuit

mounted on a plug-in circuit board and the external power circuitry.

Each control circuit board contains two identical control circuits.

Figure 2 is a control circuit block diagram.

The power supply provides regulated power for all blocks except the voltage

controlled current source. An input signal from the on-off control logic disables

the power supply which stops drive signals to the power circuitry.

The astable multivibration generates a positive square wave signal of

about 13 KHz for about 10% duty cycle.

Either this signal or a similar externally generated signal drives the

current controlled monostable multivibrator. The monostable period of this multi-

vibrator is controlled by the voltage controlled current source. The output is

buffered and used to drive the power circuitry.

The voltage controlled current source has two input signals, the voltage

across the current sensing resistor and the current from the current control

circuit. The output is a current proportional to the difference between these

two signals. This output controls the power circuit duty cycle through the

current controlled monostable multivibrator.

The current controlled circuit provides three levels of control current

for the voltage controlled current source, a standby level and two higher current

levels as controlled by current control logic digital signals. Figure 3 is a

schematic diagram of the power circuitry.

9
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The signal from the current controlled monostable multivibrator switches

transistors QI1, Q12, and Q13 on and off through driving transistor Q10. When

the transistors are switched on, the current steadily increases through coil L

and the load. When the transistors are switched off, the current flows through

diode D5 and steadily decreases. Thus, the switching duty cycle controls the

average current.

A summary of the circuit operation is as follows:

The cell current is sensed by the current sensing resistor and compared

with the current control circuit signal. The difference (error) changes the

monostable multivibrator, thus changing the duty cycle of the power switching

circuitry and correcting the load current to reduce the error. Figure 4 is a

schematic diagram of the control circuit. Gates G1 and G2 form the astable

multivibrator. Q1 buffers the output to the power circuitry. Amplifier Al

forms the voltage controlled current source. Q5 is the current source for

the current control circuit and Q2, Q3, and Q4 provide current control by

switching in different emitter resistance for Q5. Q9 acts as a low value

current source for zener diode D5. The zener voltage is used as the base

reference for Q5 and also for Q6, which provides power to the digital cir-

cuits. Q7, Q8, and D4 are used to disable the power supply when the on-off

control signal is off or low.

2.4 SAFETY CIRCUITS

Safety circuits, as shown in Figure 5, are provided to automatically

shut down the system under abnormal operating conditions. In an automatic

safety shutdown, electrolysis module power is turned off, the electrolyte pump,

water feed system and system reset are turned off, nitrogen purge to the module

comes on, and the cause of shutdown is indicated on the front panel. The "on"

command signal for those components controlled by the automatic shutdown logic

is gated with an "operate" signal. When the "operate" signal is in a logical

"false" state, these inhibit gates command the system to the "off" condition.

Thus, normal system operation depends on a logic "true" "Operate" signal. The

"operate" signal is derived from the F output of a nor-gate memory latch.

This latch is identified as Z1 on card W2. The circuit is normally in a

11
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reset condition and gets set by initiation of a shutdown signal. Switch S2

provides a manual override of the shutdown signal for module startup purposes.

The "shutdown" signal is derived from nor-gate circuitry which continuously

monitors the following safety circuits: (1) module temperatures, (2) 2' 11H2

and system safety pressure, (3) H2 detector, (4) electrolyte volume and (5)

interruption of 60 Hz power. Each safety circuit, except for item (5) above,

has its own memory latch which allows the system to indicate what type of

malfunction caused the shutdown. The input to these memory latches is driven

by the safety sensors. When an out-of-tolerance condition exists, the respec-

tive latch will be "set". A reset condition can be obtained by depressing

the system reset button S1.

2.4.1 Module Temperature

A thermister is located in each module, in contact with an end electrode.

The logic circuits for these sensors have two settings: one at 30°C (86°F) and

the second at 40°C (104°F). The 300C (86°F) point provides a warning signal;

the 40°C (104°F) point signals automatic system shutdown. Any one of the four

temperature sensors can actuate the shutdown.

2.4.2 Gas Pressure

The oxygen and hydrogen lines in the modules each contain a pressure

transducer set to actuate automatic shutdown if the pressure reaches approxi-

mately 20.7 kN/m2 (3 psig). If the oxygen pressure is below 10.35 kN/m2 (1.5

psig), the system will also automatically shut down.

2.4.3 Electrolyte Volume

The logic circuit for the reservoir pressure transducer has set points

at liquid levels one inch above and below the water feed control band. Liquid

level at either of these points will result in an automatic safety shutdown.

2.4.4 Eydrogen Detector

A hydrogen detector is located directly over the electrolysis modules

and will signal automatic shutdown if the hydrogen concentration reaches 0.8%.

2.4.5 60 Hz Interrupt

The loss of the 115 Vac, 60 Hz power input to the unit, even if momentary,

will automatically put the system in the shutdown mode from which it will have

to be restarted.
14



2.5 SYSTEM4 INTERFACES

2.5.1 Interface Instrumentation

The instrumentation available for external monitoring of the unit is

provided at the five connectors (J102 through J10io6) on the left-hand side of

the unit. The instrumentation consists of the following: three pressures,

seven temperatures, sixty-four cell voltages, eight module voltages and

currents, one total current, and two event (status) monitors. Refer to

Table 2 for the type and range of stimulus monitored and to Figures 6 through

12 for connector identification.

The temperature and pressure signals are conditioned within the unit

and emit a short-circuit protected voltage of 0-5 vdc for their respective

stimulus ranges. The open circuit output impedance for these channels is

<1 350 9 unbalanced to signal return with a shunt capacitance of approxi-

mately 1.0 p f.

The module, cell, and shunt current voltages are balanced differential

outputs. Each channel is short-circuit protected through its own passive

isolation network. The open circuit output impedance of the cell and module

voltage monitors is approximately 20 kQ while that of the module current

shunt (0-50 my) voltages is approximately 2kQ.

2.5.2 Interface Requirements

The service requirements for the operation of the Electrolytic Oxygen

Generator are the following:

Feed Water

Temperature Ambient
Pressure 20.7 kN/m2 (3 psig) min.
Quality Commercial distilled

Coolant

Fluid Water
Temperature 9 + 40°C (48 + 7°F)
Flow rate 6.3 x 10-5 m3 7sec (1 grm) max.

Nitrogen

Pressure 207 kN/2 (30 psig)

Power

115 Vac, 60 Hz
208 Vac, 60 Hz, 3 Phase

Pressure Drop in Discharge Lines 10.35 kN/m2 (1.5 psig) max.

15



Table 2

LIISC INSTRUMENTATION LIST

Qty. Stimulus Location

1 Press 0
2
Outlet

1 Press H
2
Outlet

1 Press Reservoir

4 Temp Modules

2 Temp Electro-
lyte

1 Temp Cold Plate

1 Current Total 28
Vdc Input

8 Currents Module 1A-
4B

64 Voltage Cell Volt-
age Modules
1A - 4B

8 Voltages Module
Voltages

Xducer Range

0-34.5 kN/m2

(0-5 psig)

0-34.5 kN/m2

(0-5 psig)

0-34.5 kN/m2

(o-o.5 psig)
18-43°C
(650-1o10F)
18-290C
(65°-85°F)

18-43oC
(65°-110°F)

0 - 75 A

O - 20A

O - 25 V

O - 20 V

Output
Voltages

0-5 Vdc

0-5 Vdc

0-5 Vdc

0-5 Vdc

0-5 Vdc

0-5 Vdc

0 - 50 mV

0 - 50 mV

0 - 2.5 Vdc

0 - 20 Vdc

Character-
istic

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

Analog

16
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JlO1~ l__ 1

Spare

J102
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1 Total Current

J103
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4 Module Temps
3 System Temp

Jio6
02/H2 Press

KOH Res Level

Lockheed O. ,

Figure 6 Cable Block Diagram
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E

F

G

H

J

K

L

M

N
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R

S

.T

U

V
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I
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J102 P102

Typical current +_
wiring shield to
be grounded at
shunt

-y

PT0O7CE-20-27S or
PT00CE-20-27S

Lockheed

Total Current

Module 1A

Module lB

Module 2A

Module 2B

Module 3A

Module 3B

Module 4A

Module 4B

MDAC

Figure 8 J102 - P102 Connector
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The system will deliver oxygen at a nominal rate of 3.63 kg/day (8 lb/

day), 4.55 kg/day (10 lb/day) maximum. The hydrogen and oxygen are delivered

at approximately ambient pressure.

The water connection and coolant connections are located on the left

side at the lower back corner of the unit; elbow fittings pointing toward the

back are provided with 6.35 x 10
- 3 meter (1/4 inch) male AN. The oxygen,

hydrogen, nitrogen purge and vent lines are located on the left side at the

top and are provided with 6.35 x 10'3 meter (1/4 inch) male Swagelok connec-

tions. Gas sampling septum ports are provided in these lines.

The electrical interface is located on the left side near the front

of the unit. In addition to the instrumentation connectors described previously,

connections P28 - J28 and P400 - J400 are located here. Figure 13 identifies

this connection.

2.6 SYSTEM4 OPERATION

2.6.1 Front Panel & Displays

The controls and displays presented on the front panel are presented in

Figure 14.

The controls and displays are provided into switches which are illumina-

ted when the function is energized and not illuminated when the function is de-

energized. Indicators are used to describe the status of some functions. The

indicator and switch color codes are as follows: green indicates a normal

condition; yellow indicates an abnormal condition or caution status; and red

indicates an unsafe condition. During normal automatic operation, only green

or non-illuminated switch lights should be visible.

Safety Status

The module temperature indicator displays two different temperature levels

for each module. The first level indicated by a yellow lamp is 30°C (86°F). When

this lamp is illuminated, the system is not shut down. This indicator serves only

to warn of an impending over-temperature condition. The second temperature level

is 400 C (1040 F) and is indicated by a red light. If any of these indicators are

illuminated, the system automatically shuts down.
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The next safety status indication is excess hydrogen or oxygen gas

pressure. If either gas pressure in the discharge manifold exceeds 20.7 kN/m2

(3 psig), the appropriate indicator is illuminated in red and the system is
automatically shut down. The next safety status indication is low system

pressure. If the system pressure falls below 10.35 kN/m2 (1.5 psig), the

indicator is illuminated in red and the system is automatically shut down.

The next safety status indication is electrolyte volume. If the electrolyte

level rises to near the top or drops near the bottom of the reservoir ( +

approximately 3% of total electrolyte volume), the respective indicator is

illuminated in red and the system is automatically shut down. The next safety

status indication is hydrogen detected in the cabinet. If the hydrogen detector

senses a hydrogen concentration of 0.8% by volume, the indicator is illuminated

in red and the system is automatically turned off.

Safety Controls

The safety controls are located below the module temperature displays.

The first control is the system reset. When the system is de-energized,

either automatically or by interruption of the 60 Hz power supplied to the

unit, the reset switch lamps are de-energized. Before the system can be

manually restarted, the reset switch must be depressed and illuminated in

green. If the safety condition that caused the shutdown has not been corrected,

the system will not reset. During initial startup, the reset must also be

depressed if the light is not illuminated.

One important factor in the operation of the reset switch is that when

the switch is not illuminated, the remaining control switches indicate the

switch position, not the status of the component. This is done to allow the

operator to know what components will be energized when the reset switch is

actuated. The components that are de-energized when the reset is off are the

electrolyte pump, the water feed system, and the electrolysis modules.

The next safety control is the override switch. When this switch is

illuminated in yellow, the safety circuits are overriden and they will not

automatically turn the system off. The final safety switch is the nitrogen

purge. The upper half of the switch is illuminated when the nitrogen purge

solenoids are open. The lower half of the switch is illuminated when manual

purge is selected.

28



System Controls and Displays

The group of controls located to the operator's right of the safety

controls and status indicators are for the electrolyte pump, modules, water

feed system and coolant supply to the heat exchanger. The electrolyte pump

switch operates the pump that is selected by the adjacent switch. The module

switches energize the four electrolysis modules. The first three modules have

two switch positions, off and on. The fourth module switch has three positions

which are off, standby, and on. The function of the standby mode will be dis-

cussed when the current mode selector is discussed. The next control and indi-

cator is for the water feed system (H20 pump). The water feed system has two

modes of operation. These are automatic and off. The indicator located above

the switch indicates when the water feed system is operating and feeding water

to the system.

The indicators of coolant flow to the electrolyte heat exchanger and

the cold plate are located adjacent to the water feed system control. These

are entirely automatic functions with no front panel control.

Below the safety control switches are located the current mode controls

and displays. There are two operating current modes for modules 1, 2, and 3,

and three modes for module 4. The modes for modules 1, 2, and 3 are high and

low current. These can be selected manually by positioning the auto/manual

switch so that the manual light is illuminated in yellow. Then the current

mode is selected with the high/low switch. When the auto/manual switch is in

the auto mode, the high/low switch has no control over the current mode and

its indication should be disregarded. The indicator located below these

switches always displays the actual current mode. When automatic operation

is selected, the auto portion of the auto/manual light will be illuminated in

green and the current mode will be controlled by an external electrical stimulus.

Two elapsed time meters are located below the current status indicators and

record the elapsed time in each mode.

The fourth module has the same current modes as modules 1, 2, and 3,

and in addition, it has a standby mode which selects a fixed low current that

is not controlled by the current mode controls.
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Voltage and Current Monitoring

The voltage and current displays located to the right of the current

mode control present current for the individual modules, module voltage and

all of the cell voltages.

The four modules are each electrically divided into two 8-cell banks

designated A & B. The voltage and current for banks A & B can be selected

with the rotary switch located below module current and voltage meters.

The individual cell voltages for each bank can be observed by placing

the rotary switch below the cell voltage meter on the desired bank and selecting

the desired cell within that module with the digital selector switch.

Circuit Breakers

On the lower left-hand side of the panel are located the power circuit

breakers. The first four circuit breakers control the 28 volt D.C. power to

the electrolysis cell modules. The next circuit breaker controls the 115 volt,

60 Hz power for the electrolyte pump and all controls and displays. All D.C.

power required by the unit is supplied from external power supplies.

Startup Mode

The switch located next to the circuit breakers is the startup mode

selector. In the auto mode, the push button switches to the right of the

selector switch are used to start and stop the system. In the manual mode,

the start-stop buttons are deactivated.

2.6.2 Internal Controls and Displays

The displays and the internal controls which can be manually adjusted

are described in Table 3 and portrayed in Figures 15 through 18.

2.6.3 Normal Operation

During normal automatic operation, no operator adjustments are required.

The unit can be switched to manual operation in either the low or high modes.

Either the continuous or cyclic operation mode can be selected and the time

in high mode can be adjusted as necessary.
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Table 3

SYSTEM CONTROL AND DISPLAYS

CONTROLS

ELECTROLYTE CIRCULATION SYSTEM

Flow Control Valves (4)

DISPLAYS

Discharge Valves (4)

Fill Valve

Drain Valve

Electrolyte Flow
Meters (4)

NITROGEN PRESSURIZATION SYSTEM

Module Purge Flow Control Valve

Module Isolation Valves (8)

COOLANT SUPPLY SYSTEM

Heat Exchanger Flow Control Valve

Cold Plate Flow Control Valve

WATER FEED SYSTEM

Water Flow Control Valve

Manual Feed Switch

PRODUCT GAS

Discharge Valves (8)

LOCATION

In front of modules 1 & 2
and at left-front

On top of modules

Upstream of electrolyte pump

Downstream of electrolyte
pump

In front of reservoir

Above electrolyte flowmeter

Left side of cabinet

Below ion canister

Below ion canister

Downstream of water solenoid
valves

Connector panel - left side

Left side of cabinet
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In the continuous mode of operation, the high/low mode timer operates

on a 100-minute cycle. Within this cycle, the time in high current mode can

be selected using the digiswitch. The oxygen production rate is determined by

the equation:

Wo2 (lb/day) = *o5664tH + 4.536 (1)

where

tH = time in high (digiswitch setting)

The time in high mode is selectable to the nearest whole minute. For example,

to obtain 8 lbs/day of oxygen, solve equation (1) for t :

W02 - 4.536 8.0 - 4.536
tH = 05664 0.5664

tH = 61.2

The nearest setting to provide a minimum of 8.0 Ibs/day of oxygen is

tH = 62, which provides 8.048 lbs/day.

In the cyclic mode of operation, the on/off timer operates on a 94-minute

cycle. The on-time during each cycle is fixed at 55 minutes. (Electrolysis power

is off for 39 minutes of each cycle). Within the on-portion of the cycle, the

time in high current mode is selected using the digiswitch.

The rate of oxygen production during the on-portion of the cycle is

determined by the equation:

WO (lb/day) rate = 0.1030tH + 4.536 (2)

The total oxygen produced in a 24-hour period is determined by the

equation:

Wo (lb/day) = .o603t
H
+ 2.654 (3)

2
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2.7 COMPARISON OF 90-DAY AND 182-DAY TEST SYSTEM CONFIGURATION

At the conclusion of the 90-Day Test, the Electrolytic Oxygen Generator

was completely disassembled (excluding electronics) and all components were

inspected for evidence of corrosion or wear. The program of rebuilding and

refurbishing the unit in preparation for the 182-Day Test required certain

changes in internal configuration to (1) incorporate design improvements

recommended as a result of the 90-Day Test experience, (2) correct malfunctions

evidenced in the 90-Day Test and replace worn components, and (3) provide for

the new interface requirements of the 182-Day Test which differed from those

of the 90-Day Test.

2.7.1 Design Improvements

A summary of the design improvements which were implemented for the

182-Day Test is presented in Table 4.

2.7.2 Refurbishment

The following changes were made to correct known malfunctions and to

replace worn components:

o Positive temperature control was added for the electronics cold

plate to prevent moisture condensation.

o The internal 28 VDC power supply which had failed due to excessive

operating temperature was removed. An external 28 VDC supply

connection was provided as a replacement.

o The high current elapsed time meter, all solenoid and check valves,

and the water feed timers were replaced.

o A fan was installed in the electronics chassis because of the addi-

tional heat loads of the new electronics circuits.

o Plastic N2 purge lines were replaced with stainless steel to prevent

gas diffusion.

o Holding current was provided for all solenoid valves to reduce their

operating temperature.

o The plastic heat exchanger was replaced with a Kynar-coated stainless

steel unit.

o The anodes in Module 1 were replaced with experimental electrodes of

the type under development under Contract NAS-10405.5
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2.7.3 Interface Requirements

The following changes were made for the new test conditions:

o The oxygen pump, gages and reservoir pressurization system were

removed because ambient gas discharge pressure was acceptable

for the 182-Day Test.

o Interface instrumentation of all system temperatures, pressures,

currents, and cell/module voltages was incorporated to provide

test data to the 14DAC data logging system.

o The operating mode was modified to permit continuous high/low

current mode or cyclic on/off mode operation on command from

an external signal. The external device which provided the

signal allowed selection of operating mode and high current

duty cycle.
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PRECEDING PAGE BLANK NOT FILME

Section 3

CHECKOUT TESTING

3.1 INTRODUCTION

This section contains the results of the checkout test program con-

ducted to verify the operational status of the NASA-LMSC Electrolytic Oxygen

Generator prior to delivery of the unit to the McDonnell-Douglas Astronautics

Company (MDAC) facility in Huntington Beach, California. Testing was performed

by Bioengineering personnel in the LMSC facility in Sunnyvale, California. Test

results for bench testing of critical components, a 50-hour test period to

demonstrate startup, shutdown, and restart capabilities in the new automatic

mode, and a final 100-hour acceptance test are included in the following

paragraphs.

3.2 PRE-TEST PARAMETERS

3.2.1 Electrolysis Modules

External Leakage

Conditions. Each module was plumbed with a common manifold for both

gas discharge ports and an electrolyte port; all other ports were

sealed. The module was submerged completely in water and the mani-

fold was pressurized to 34.5 kN/m (5 psig). Visual inspection for

gas bubbles was the external leakage criterion.

Data Recording Requirements. Log book entry; Pass or fail. No

data sheet.

Values and Tolerances. No visible leakage was acceptable at 34.5 kN/m
2

(5 psig).

Results. Modules 2 and 4 passed on first assembly. Module 1 leaked

on first assembly due to a defective O-ring. The O-ring was replaced

and Module 1 passed on second assembly. Module 3 leaked on first

assembly due to a missing O-ring. An O-ring was installed and

Module 3 passed on second assembly.

Preceding page blank
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Cross-Leakage

Conditions. Each electrolysis module was installed in a test

station in the electrolysis test facility. Water was first

circulated through the electrolyte circulation loop and visual

inspection was made for gas leakage into the electrolyte by

observing the liquid discharge for entrained gas bubbles. Liquid

leakage into the gas passages was measured by visual inspection

of the liquid level in the reservoir and observing a liquid

level change. The test was then repeated with KOH.

Data Recording Requirements. Log book entry; pass or fail. No

data sheet.

Values and Tolerances. No visible cross leakage was acceptable.

Results. All four modules passed this test.

Electrical

Conditions. Each module was operated on a test station in the

electrolysis test facility using a single constant current power

supply to power the two electrical banks of the module in parallel.

The total current was set to approximately 9 A; individual bank

currents and all cell voltages were measured. The test duration

was four hours. Visual inspection for internal shorting was

made by observing the electrolyte discharge for entrained gas

bubbles.

Data Recording Requirements. Log book entry; internal shorting pass

or fail. Cell voltages were read on a digital voltmeter, currents

on ammeters (O-lOA scale). Data sheets with the following column

headings were utilized:

Date, time, elapsed time

Cell voltages: Al through A8; Bl through B8

Bank current: A and B.

Data were recorded once an hour.

42



Values and Tolerances.

Total Current

Bank Current

Cell Voltage

Instrument Calibration.

Ammeter

Voltmeter

9.0 + l.OA

4.5 + 0.5A

1.7 + 0.2 Vdc

Weston, Model 931
O-10A
MSL 71068
Calibrated 7-2-71
Due 12-31-71

Non-Linear Systems
Model 481
MSL 45993
Calibrated 7-31-71
Due 10-22-71
Accuracy + (0.04% I.V.

+0.01% F.S.)

Results. Modules 2, 3, and 4 were subjected

test. Final currents and cell voltages were

Current

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

Cell 6

Cell 7

Cell 8

2A

4.7

1.631

1.606

1.604

1.604

1.621

1.604

1.628

1.637

2A

4.4

1.611

1.635

1.623

1.609

1.609

1.596

1.630

1.648

3A

4.7

1.623

1.614

1.597

1.622

1.621

1.594

1.609

1.622

Module 1 operated at 12 Amps for 48

shown in Table 5 and Figure 19.

3B

4.4

1.635

1.626

1.637

1.619

1.607

1.599

1.609

1.623

to and passed this

as follows:

4A

4.6

1.609

1.6l01

1.605

1.594

1.593

1.584

1.598

1.615

4B

4.5

1.635

1.6o8

1.607

1.600

1.600

1.599

1.607

1.597

hours with the cell performance

3.2.2 AP Controllers

Set Point

Conditions. Each controller was installed on a manifold block and

tested at gas flow rates of 400, 800, and 1600 cc/min N2 flow rates
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Table 5

MODULE 1 CECKDOUT TEST RESULTS

Cell Voltage at 12 Amp.

Module 1A

Elapsed
Time (hr)

o

1

3

6
*22

24

27.5
48

Module lB 0

1

3

6

*22

24

27.5

48

1

1.749

1.810

1.809

1.794

1.799

1.819

1.839

1.809

1.760

1.829

1.830

1.809

1.799

1.829

1.859

1.829

2 3

1.779 1.749

1.826 1.800

1.849 1.800

1.869 1.789

2.019 1.799

2.059 1.809

2.079 1.839

2.089 1.809

1.760 1.739

1.809 1.769

1.819 1.770

1.802 1.759

1.799 1.749

1.839 1.770

1.869 1.806

1.849 1.789

4

1.762

1.819

1.820

1.819

1.839

1.879

1.910

1.899

1.750

1.776

1.776

1.762

1.740

1.770

1.800

1.780

5

1.749

1.790

1.789

1.779

1.779

1.802

1.829

1.8ol01

1.753

1.761

1.761

1.749

1.729

1.749

1.779

1.769

6 7

1.780 1.749

1.819 1.770

1.820 1.779

1.819 1.769

1.829 1.769

1.869 1.8oo00

1.929 1.839

1.929 1.829

1.790 1.749

1.839 1.779

1.831 1.779

1.819 1.769

1.789 1.749

1.809 1.769

1.849 1.803

1.829 1.789

* Temperature above 27°C control point.
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1.759

1.791

1.789

1.779

1.779

1.810

1.849

1.826

1.799

1.839

1.859

1.859

1.881

1.939

2.009

2.009
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and liquid pressures of 6.9 and 13.8 k/m
2

(1 and 2 psig).

The controller set point was adjusted by means of the valve seat position

to read 6.22 + 0.7 kN/m (25 + 3 inches of water). Differential pressure

was measured with a Magnehelic gage (0 - 50 inches of water). Liquid

pressure was measured with a 0 - 15 psig gage. Flow rate was measured

with a Brooks rotameter.

Data Recordng Requirements. Entries were made in a log book of /P

at each flow rate and pressure.

Values and Tolerances. Differential pressure was required to be

6.22 + 0.7 kN/m2 (25 + 3 inches of water).

Results. The measured set points for the /AP controllers were the

following:

02 kN/m2 (in. H20) H2 kN/m (in. H20)

1. 5.97 - 6.72 (24.0 - 27.0) 6.o5 - 6.85 (24.3 - 27.5)

2. 6.10 - 6.72 (24.5 - 27.0) 6.10 - 6.85 (24.5 - 27.5)

3. 5.97 - 6.85 (24.0 - 27.5) 6.10 - 6.97 (24.5 - 28.0)

4. 5.97 - 6.72 (24.0 - 27.0) 6.10 - 6.85 (24.5 - 27.5)

External Leakage.

Conditions. Inlet liquid and gas ports were manifolded, exit gas

port was sealed and the unit was submerged in water with 34.5 kN/m2

(5 psig) N
2
pressure on the manifold.

Data Recording Requirements. Log book entry; pass or fail. No data

sheet.

Results. All of the AP controllers passed this test.

3.2.3 Water Feed Controller

Conditions. The water feed controller was installed in a bench reservoir

containing water. End to end signal output vs H20 head in inches,

control band, hysteresis, level safeties, and timing circuits were

monitored.
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Data Recording Requirements. Log book entries were made of voltage

signal vs H2 0 head, control band, repeatability on at least ten water

feed cycles, level safety signal set points and timing circuit

functions. No data sheets.

Values and Tolerances.

Signal Voltage

Range

Accuracy

Hysteresis

Control Band

Low Level Safety

High Level Safety

Feed Time Limit

Feed Cycle Limit

Results.

in Figure

pressure.

0.008 psi

are those

Digital readout + 1 mV

0-2.69 kN/m2 (0.32 psi) 0-5 Vdc

+ 25 N/m2 (0.036 psi)

+ 62 N/m2 (0.09 psi)

1.12 - 1.25 kN/m
2
(0.15-0.18 psi)

0.75 kN/m2 (0.11 psi)

1.5 kN/m2 (0.22 psi)

12 + 1 sec.

10 + 1 min.

The range calibration of the reservoir transducer is shown

20 as signal voltage of the transducer versus static head

This figure shows the hystersis to be approximately

or 55 N/m2. The values of control and safety set points

given above.

3.2.4 Temperature Controls, Indicators and Safeties

Conditions. Each thermistor probe was calibrated by immersion in a

controlled temperature water bath. End to end voltage signal vs.

temperature was measured and all set points verified.

Data Recording Requirements. Log book entries were made of tempera-

tures, voltages, and set points. No data sheets.

Values and Tolerances. Temperature measurementswere made with cali-

brated mercury thermometers and voltages with a + 1 my digital volt-

meter. The following is a list of values and tolerances for the

individual temperature sensors.
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Module Overtemperature (4)

end-to-end 18 - 440C 0-5 vdc

accuracy + 1.0°C

range 18 - 44°c

limits set warn 30°C

shutdown 40°C

Temperature Control and Indicator - Electrolyte #1

end-to-end 20 - 30°C
accuracy + 1.0°C

range 18 - 44°C

set point 30 + 2°C

Temperature Control - Coldplate

end-to-end 18 -44°C

accuracy + 1.00C

range 18 - 44°C

set point 25 + 5°C

Temperature Indicator - Electrolyte #2

end-to-end 18 - 44°C

accuracy + 1.0°C

range 18 - 44°c

Results. The set points given above were achieved. Calibration

curves for the thermisters are shown in Figures 21 through 24.

3.2.5 02 and H2 Pressure Transducers

Conditions. Pressure vs signal output end-to-end was tested by

pressurizing with N2 and using a Wallace-Tiernan gage for pressure

indication and + 1 mv digital voltmeter for signal measurement.

Data Recording Requirements. Log book entries of range and set

point. No data sheets.
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Values and Tolerances.

range

accuracy

set points

0- 34.5 kN/m
2

(0 - 5 psig)

+ 0.34 kN/m
2

(+ o.o05 psi)
9.0 kN/m

2
(1.3 psi) low 02 pressure

17.7 kN/m2 (2.57 psi) 02 overpressure

16.7 kN/m
2

(2.42 psi) H2 overpressure

Results. The calibration curves for these transducers are shown

in Figures 25 and 26. Some hysteresis was noted; values given

above are for decreasing pressure for low 02 and increasing pressure

for overpressure.

3.2.6 Auto Start-up Sequence

Conditions. Sequential command signals were monitored as a function

of time. The units to which the command signals were directed were

deactivated during this test.

Data Recording Requirements. Log book entries were made of command

signals vs time. No data sheets.

Values and Tolerances. 0 - 60 sec. + 2 sec. total.

Results. The auto startup sequence was verified to be within

tolerances.

3.2.7 Shutdown Signal Sources

Conditions. Each shutdown signal was either stimulated or simulated

and the command to shutdown was monitored.

Data Recording Requirements. Log book entries: Pass or fail for

each safety sensor. No data sheets.

Values and Tolerances.

Overtemperature

Overpressure (02)
(H2)

Lo 02 pressure

Electrolyte volume (high
and low)

H
2

in cabinet

Loss of power

warn 30 + 1.0°C
shutdown 40 + 1.0°C

17.7 kN/m2 (2.57 psig)
16.7 kN/m (2.42 psig)

9.0 kN/m
2

(1.3 psig)

1.5 and 0.75 kN/m2 (6 and 3 "H20)
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PRESSURE (PSIG)

Figure 25 Oxygen Pressure Transducer Calibration Curve
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Results. Values given above were verified for the safety signal

sources.

3.2.8 Hi/Lo and On/Off Signal Circuits

Conditions. Timing and duty cycles were measured.

Data Recording Requirements. Log book entries; no data sheets.

Values and Tolerances. Timing + 1.0 min.

Duty Cycle variable

Results. Timing verified to be within + 1.0 min.

3.2.9 Interface Instrumentation

Conditions. Continuity measurements were made of all signal inter-

faces at the connector.

Data Recording Requirements. Log book entries: pass or fail.

No data sheets.

Values and Tolerances. None

Results. Continuity was verified.

3.3 FIRST FIFTY HOURS - SYSTEM TEST

The Electrolytic Oxygen Generator was operated for a total of fifty

(50) hours in a shakedown test in preparation for the one hundred (100) hour

acceptance test. All of the safety shutdown features were exercised twice.

The automatic startup/shutdown feature was exercised a total of eighteen

times. The test log is summarized in Table 6.

A number of minor problems in the wiring and circuitry were identified

and corrected. Excessive cell voltages toward the end of testing were traced

to a decrease in the KOH concentration. An additional twenty-four (24) hours

of testing, starting with a fresh charge of the correct KOH concentration was

conducted to investigate the cause of the problem. It was found that the all

plastic heat exchanger was leaking from the tube to the shell side. A new

Kynar-coated development model stainless steel heat exchanger was installed

prior to the start of the 100-Hour Acceptance Test.
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TABLE 6 - TEST LOG - FIRST FIFTY HOURS

Event/Action

Auto-startup;
high/low mode

Auto shutdown
Module 1.

Auto startup.

Auto shutdown

Auto startup.

Auto shutdown

Auto startup.

Auto shutdown

Auto startup;
mode control.

operating with manual stimulus of
command.

by simulating overtemperature on

by simulating H2 overpressure.

by stimulating high volume.

by stimulating low volume.

operating with automatic high/low

Auto shutdown by stop switch to investigate problem
in timer circuit.

Auto startup; operating with automatic high/low
mode control.

Auto shutdown by stimulating low volume.

Auto startup.

Auto shutdown by stimulating high volume.

Auto startup.

Switch to on/off control mode.

Auto shutdown by stop switch to correct water feed
timer circuit problem.

Auto startup.
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Date

9/8/71

9/9/71

Time

1400

1605

1609

18oo00

1815

1915

1920

2020

1525

2200

9/10/71 0230

o044o

0445

o45o

0455

0524

1100

1101



Table 6 - Test Log - First Fifty Hours (Con't).

Event/Action

Auto shutdown by simulating overtemperature.

Auto startup.

Auto shutdown by simulating H2 overpressure.

Auto-startup.

Auto shutdown by stop switch to correct problem
in N2 purge logic circuit.

Auto startup.

Switched to high/low mode control.

Auto shutdown by stop switch to change temperature
control point on heat exchanger.

Auto startup.

Auto shutdown by simulating H detector signal.
Vendor corrected a circuit problem in H2 detector
controls.

Auto startup.

Auto shutdown by stimulating H2 detector.

Auto startup.

Auto shutdown by stop switch.

Auto startup; operating with automatic high/low
mode control.

Auto shutdown by stop switch to connect a loose
wire on water feed circuit card.

Auto startup.

Auto shutdown by stop switch. Cell voltage high.
KOH concentration "-25%.
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Date

(9/10/71
Cont 'd)

Time

1352

1354

1400

1402

1404

1619

2400

9/11/71 1220

1620

1715

1900

1905

1906

2400

9/12/71 1445

1520

1555

1737



Table 6 - Test Log - First Fifty Hours (Con't).

Date Time _ Event/Action

9/13/71 1200 Replaced KOH with 30% solution.

1348 Auto startup.

1700 Auto shutdown by stop switch; 50-hour test
completed.
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100-HOUR SYSTEM TEST

Conditions. The final 100 hours were continuous hi/low mode operation.

The testing was substantially the same as the acceptance test prior

to the NASA-MDAC 90-day test. The hi/low mode timer was set for the

nominal 02 generation rate of 8.0 lbs/day. The test parameters for

this run were the following:

System

Oxygen Production
Purity (less H20 vapor)
Admixed hydrogen
Discharge pressure

Hydrogen Purity
Admixed oxygen
Discharge pressure

Voltage Cell voltage
Module voltage

Current High mode
Low mode

Safety Shutdown
Module temperature
°2 Pressure
H Pressure
High electrolyte
Low electrolyte
H2 in cabinet
Power loss
Module high current
(module only)

Interface Feed Water: Temperatw

Coolant:

Nitrogen:

Power:

Ir

Pressure
Quality

Fluid
Temperatur
Flow rate

Pressure

Pressure drop in dischar

3.64 kg/day (8 lbs/day)nom.
99.7% min.
0.1% max.
11.7 kN/m (1.7 psig) nom.

99.3% min.
0. 2% mae
11.7 kN/m (1.7 psig) nom.

2.4 Vdc max.
19.2 Vdc max.

12.0 + 1.0 A nom.
4.5 + 0.5 A nom.

40°c (1040 F) max.
17.7 kN/m2 (2.57 psig) max.
16.7 kN/m2 (2.42 psig) max.
1.5 kN/m2 (6 "H0O) max.
o.75 kN/m2 (3 "12 0) mn.

0.8% max.

20A max.

re ambient now.
6.9 kN/m (1 psig)min.

commercial distilled nom.

ethylene glycol
re 7 + 3° C

6 .3-x 10-5 m3/sec (1 gpm)
max.

207 kN/m2 (30 psig) nom.

115 Vac, 60 Hz
208 Vac, 60 Hz, 3 Phase

rge lines: 10.35 kN/m2 (1.5
psig) max.

3.4

3.4.1



3.4.2 Data Recording Requirements. The interface instrumentation was

automatically logged once an hour. The automatic data logging

system consisted of an Electro-Instruments Model 881 digital

voltmeter, output control, multi-channel crossbar scanner, and

a paper tape printout. System status parameters other than those

included in the interface instrumentation were recorded on data

log sheets every hour.

3.4.3 Values and Tolerances

Interface Instrumentation - Automatic

Cell voltage (64)

Module voltage (8)

02 Pressure

H2 Pressure

Module temperature (4)

Electrolyte temperature

Cold Plate temperature

Electrolyte temperature
Control

Reservoir pressure

Total current

Module current (8)

Module on/off (4)

Hi/low mode

System On/Off Mode

Range

O - 2.5 Vdc

0 -3. Vdc

0-34.5 kN/m2

0-34.5 kN/m
2

18 - 440c

18 - 44°C

18 - 440c

18 - 44°c

0-2.07 kN/m2

Control or Limit

(o-5 psig)

(0-5 psig)

(0-0.3
psig)

0 - 75 A
0 .- 20 A

Off - 0/4 - On V

Lo - o/4. - High V

Off - 0/4 - On V

17.7 kN/m2

16.7 kN/m2

40° + 1°C

25° + 5OC

25° + 50°C

30° + 2°C

(2.57 psig)

(2.42 psig)

1.10-1.15 kN/m2
(0.16 - 0.166 psig)

20 A

System Status - Manual

Feed Water: Pressure
Temperature
Total quantity

Coolant Supply Temperature:

Flow rate

6.9 kN/m2 (1 psig)
ambient
initial-final volume

7 + 30C

6.3 x 10
- 5 m3 /sec (1 gpm) max.
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Volumetric flow rate
Discharge line pressure
*KOH carry-over
*Composition

Volumetric flow rate

Discharge line pressure
*KOH carry-over
*Composition

Supply pressure

Flow rate

wet test meter
10.35 kN/m2 (1.5 psig) max
liquid trap pH
99.3% (min-)

3.64 kg/day (8 lbs/day)
wet test meter
10.35 kN/m2 (1.5 psig) max
liquid trap pH
99.7% (min.)

207 kN/m (30 psig)

0.63 x 10 5 m3/sec/module
(6 gph/module)

Electrolysis

Low amp mode

High amp mode

Power Input:

Volts, amps

Time

Time

panel meters

elapsed time meter

elapsed time meter

*Water feed and KOH carry-over, total quantity: Gas sampling once
every 24 hours.

3.4.4 Results

Operation. The 100-hour test was conducted during the period 1430

September 21 through 1830 September 25, 1971. Operation of the

Electrolytic Oxygen Generator was completely automatic and con-

tinuous. There were no shutdowns and no operator adjustments of

any kind made to the system during the test.

Voltage Current Data. The performance of the electrolysis modules

during the test is presented in Figure 27. No significant change

in performance was noted. Selected individual cell voltages and

voltage ranges in high and low current are shown in Figure 28.

Gas Analysis. Gas samples taken daily were analyzed chromato-

graphically for admixing. In the oxygen stream, no hydrogen was

detected within the sensitivity limit of 0.05%. In the hydrogen

stream, the oxygen content was measured to be less than 0.1%.
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Heat Exchanger Coolant Cycle. Cycle frequency of the coolant to the

heat exchanger was monitored through several cycles in high current

mode. The cycle was measured to be 1.0 minutes "on" and 4.0 minutes

"off", or a 20% duty cycle.

Current Readout. Noise measurement was performed on the current

monitors at the interface instrumentation connector with these

results:

At Data Logger At Unit

Total current (low mode) 60 my pp 18-30 mV

Module 1A (low mode) 40 mv pp 12-13 mV

The noise on Module 1A current monitor at the interface contains

a symmetrical - 330 H sire wave of- 20 mV pp amplitude. Source
z

of this signal is unknown. However, since it is symmetrical, a

dc reading meter will average this signal to zero and should have

minor effect on the readout measurement.

Water Consumption. The total water consumption was determined by

delta volume measurement at the end of the test. A total of 17.2

x 10O
-
3 m3 of water was consumed in the 100 hours. Without correcting

for losses by evaporation in the effluent gases, this value indicates

approximately 100% current efficiency for the electrolysis modules.

However, the wet test meter data indicate that the current efficiency

is closer to 98%.

NOTE: The hydrogen wet test meter readings are 10% low. This was

determined in a calibration of the 0
2
and H

2
meters after the test

was completed.

KOH Carryover. Measurements of pH in the 0
2
and H2 discharge water

bubblers before and after the 100-hour test indicated no KOH carry-

over during the test.

KOH Concentration. A sample of the solution of KOH which was used

to charge the system and a sample removed from the system at the

end of the test were analyzed with the following results:
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KOH KCO
3

Initial 6.7 M 0.21 M

Final 7-07 M 0.30 M

Data Logger Printout. The data logger used in the 100-hour test

to record interface data did not operate completely satisfactorily.

Some channels in the printout show random extraneous signals. The

current readings were not acceptable because of noise generated in

the data logger. Current readings were taken manually once an hour

from the front panel ammeter.

3.5 PREPARATION FOR DELIVERY

At the conclusion of the 100-hour acceptance test, the Electrolytic

Oxygen Generator was prepared for shipment to McDonnell-Douglas. The follow-

ing actions were taken:

o The electrolyte was drained from the system.

o Interface plumbing lines for N2 supply, oxygen and hydrogen dis-

charge, vent, coolant in and out, and water supply were disconnected;

the interface connections were capped.

o Manual valves for heat exchanger and cold-plate coolant, and N2

purge valves were closed.

o Interface electrical connectors were unplugged and the junctions

capped.
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Section 4

INSTALLATION AND CHECKOUT

The Electrolytic Oxygen Generator was installed in the bench test

facility at MDAC, Huntington Beach, California. The system was operated

for approximately 160 hours for checkout purposes. The first half of the

testing was devoted to preliminary operational and interface checkout. A

Test Readiness meeting was then held with the NASA Test Committee to review

and document the results and necessary corrective actions. Test Committee

approval was obtained to proceed with the 80-hour Checkout Test required

before start of the 182 -Day Test. At the conclusion of this checkout period,

a second Test Readiness meeting was held to define problem areas and correc-

tive actions necessary before formal test start.

The following paragraphs discuss the problems identified in the

Checkout Testing and committee meetings, and the corrective actions which

were taken.

4.1 TEST READINESS MEETING #1

The first test readiness meeting was concerned with the review of

applicable documents, e.g., circuit diagrams, instruction manual, safety

review report, and acceptance test report, review of the preliminary testing

and interface compatibility and documentation of action items required before

proceeding with the final 80-hour checkout test. The following were the items

noted and the actions that were taken prior to the final 80-hour checkout run

and Test Readiness Meeting #2.

1. The LMSC local representative was designated as the only one

authorized to operate and maintain the Electrolytic Oxygen

Generator.

2. Final as-built and as-tested updating of the Checkout Test

Report, Instruction Manual, and Configuration Drawings were

prepared.

3. The thermister identified as EL #l and used to control the

coolant supply to the electrolyte heat exchanger was malfunction-

ing and had to be replaced. Visual inspection of the failed unit

indicated that the failure probably resulted from damage to the

69 Preceding page blank



thermister element during processing at LMSC.

4. Excessive noise in the LMSC current instrumentation to the MDAC

data logger was encountered. Additional filtering was added to

the LMSC unit instrumentation, which improved the module current

readings but not the total current reading. It was decided to

eliminate the total current signal.

Approval was given at TRM #1 to conduct the 80-hour Checkout Run of

the LMSC unit.

4.2 TEST READINESS MEET ING 7#2

The Electrolytic Oxygen Generator was subjected to an 80-hour Checkout

Run which was accomplished successfully with no shutdowns. Problems identified

during the test and corrective actions taken subsequent to the test were the

following:

1. Chatter in the heat exchanger coolant solenoid valve was corrected

by increasing the hysteresis of the thermister signal.

2. The oxygen 3-way solenoid valve was sticking occasionally. The

duration of the current pulse to actuate the valve was increased.

Since there are four valves electrically in parallel in this

circuit, a mechanical malfunction of the 02 valve was suspected.

The valve was disassembled for inspection; no visible cause for

sticking was evident. It was agreed with NASA to replace the 3-

way valves later in the testing if the problem re-occurred.

3. Occasional flickering of the current mode indicator lights on

the front panel was observed. The problem was attributed to

electronic noise; addition of a filtering capacitor to the

appropriate circuit eliminated the problem.

4. A slow leak was detected around the threads of a stainless steel

reducer bushing on the heat exchanger. When the bushing was in-

stalled at Lockheed, excessive torque was required because the

tapped hole in the heat exchanger header was out of round. It

was, therefore, decided to seal the bushing with epoxy rather

than to try applying additional torque.
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5. A MDAC power supply was tested and found to be a suitable backup

for the Lockheed power supply.

6. When the system was operated at the 10 lb/day rate, it was found

that a setting of 97 minutes high mode on the "100 minute timer"

did not provide the desired 3 minutes of low mode, i.e., the unit

remained in high mode all the time. A minor adjustment to the

100-minute timer circuit was made.

The following were additional items noted at TRM #2.

1. Cell 2 in Module 1A was consistently running at a higher voltage

than all other cells. It was agreed that 2.5 volts would be the

cell voltage limit at which the Test Committee Chairman would be

notified to examine possible operating changes.

2. Some drift in current settings was observed during the 80-hour

checkout run. Module 4B in particular drifted from the 4.5 A

initial setting and stabilized at 6 A. It was agreed to leave

the module at this setting for the 182-Day Test.

3. A digital voltmeter calibration schedule for the panel ammeter

and the pressure transducers was established.

4. Updating of documentation was made a requirement to reflect

changes made in the electronics.

Approval was given at TRM #2 to start the 182-Day Test of the

Electrolytic Oxygen Generator.
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Section 5

182-DAY TEST

5.1 TEST OUTLINE

The test program was structured to subject the electrolysis system

to the nominal design point load, 3.63 kg/day (8 lbs/day) for the first 13

weeks to approximate the essential conditions and requirements of the 90-Day

Test. The second half of the test program was intended to explore off-design

conditions. The operating modes of the test are shown in Figure 29.

A major groundrule of the test was a "hands-off" philosophy to approxi-

mate NASA operational usage by crewmen or relatively unskilled operators in

a remote location. A test committee composed of the contractors involved and

three NASA development centers, the Manned Spacecraft Center (MSC), the Langley

Research Center (LRC) and the Ames Research Center (ARC), controlled the pro-

ceedings of the test program. The committee was chaired by MSC. Test

committee management was used to pool capabilities and to allow interchange

of ideas in the event that changes in operating conditions or hardware were

indicated.

5.2 OVERALL SYSTEM PERFORMANCE

The Electrolytic Oxygen Generator operated for 160 days, cumulative,

during the 182-Day Test period. This corresponds to an 88 percent on time.

A summary operational status is shown in Figure 30. A detailed system

status with explanatory notes is included in Appendix A. The longest period

of completely uninterrupted operating time was the last 53 days of the test.

When the unit was stopped on the last day of the test, it was operational with

no indication of trends toward failure. All of the operating conditions of the

test were met. There were no interface problems and no cell or module failures

of any kind. Most of the downtime resulted from troubleshooting of electronics

problems.

Preceding page blank 1
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5.3 PERFORMANCE DATA AND ANALYSIS

5.3.1 Electrolysis Module Performance

A summary plot of voltage/current data for all of the electrolysis

modules is shown in Figure 31. (More detailed plots are included in

Appendix A). Values shown are weekly averages in high current mode except

for Module 4, which remained in low mode. Note that discrete data points

have been spanned with continuous lines for the purpose of illustration

of trends; in actual operation, the current was cycling high/low/off

(12/45/0 A) depending on the test condition. During the first 13 weeks

of the test, the high current mode duty was 62% of a 100-minute cycle.

Orbital (on/off) operation occurred from the middle of the 15th to the

middle of the 16th week. The oxygen output was ramped from 3.63 to 4.55

kg/day in 0.23 kg/day increments during the 17th week. The 4.55 kg/day

rate was maintained for five weeks (19th-23rd). The last three weeks of

the test, the oxygen output was reduced back to the nominal 3.63 kg/day.

It is apparent from Figure 31 that the electrical performance of

all of the modules was stable, regardless of test conditions. Some fluctua-

tion in current is evident with Module 4B showing the greatest variation,

but in no case is the current out of control. All of the module voltages

show a slight upward trend. The effect is most pronounced in Module 1

containing the experimental anodes. The effect of the voltage increase on

system power requirements is discussed in Section 5.3.2.

The experimental anodes in Module 1 were strictly of development

status. Each one was handmade in the laboratory without formal process

specifications. Therefore, quality control and uniformity were difficult

to achieve. The only standard which was established was an arbitrary

maximum of one percent organic extender residue after post treatment,

as determined by thermo-gravimetric analysis (TGA).

Processing and performance data for these electrodes are given

in Table 7. The electrodes are numbered in the sequence in which they

were made. The cell number in Module 1 in which each was used during

the 182-Day Test is indicated. Electrical performance at the beginning,

76



ii I ~i

91 1.1;.I..
t 9 = As I,

>I o 5 > 1 ! :
m I~ , N

77

I'5s3ad .'X 3I a I < i co ] In i <J I w I < I to I | :



Table 7

Experimental Electrode Data

Week 1
Cell (A-12.4 Amp
No. B-12.6 Amp)

8B

7B

2A

7A

3B

8A

2B

5B

6A

1A

6B

3A

lB

5A

4B

1.799

1.825

1.762

1.846

1.783

1.774

1.783

1.813

1.752

1.783

1.801

1.795

1.785
1.819

1.783

1.758

Cell Voltage
Week 12

(A-12.6 Amp
B-13.0 Amp)

1.864

2.065

1.839

2.049

1.856

1.854

1.862

1.860

1.803

1.868

1.831

1.841

1.819

1.850

1.823

1.801

Week 26
(A-12.9 Amp
B-13.5 Amp)

1.962

2.156

1.997

2.399

2.010

1.997

1.930

1.928

1.893

2.108

1.848

1.901

1.829

1.872

1.877

1.854

TGA No. Of
l Leachings

1.00

0.90

1.00

o0.95

0.90

0.60

0.50

o0.95

0.50

0.80

0.76

1.00

0.70

1.00

o0.95

0.83

0.90

0.98

0.90

0.80

1.00

o.60

0.90

3

3

3
2

1

3

1

4

1

2

1

2

2

3

3

1

3
1

1

1

1

1

1
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Electrode
Number

1
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middle, and end of the test in high current mode is presented. The last

two columns of data show the TGA analysis and the number of post-treatment

operations that were required to reach the acceptable TGA level of 1.0%.

There appears to be no correlation between TGA percent residue and the

electrical performance in this range. Cell 2A, containing electrode A8,

exhibited the highest voltage, which may have resulted from mechanical

degradation in post-treatment. This electrode required 4 leachings, more

than any other electrode, to reach the TGA standard.

It is also apparent that a "learning curve" was involved. The last

six electrodes in the series showed a very consistent voltage grouping which

was probably the result of gradual improvements in the processing and post-

treatment techniques.

A summary plot of electrical performance of Cells 2A and 2B is

shown in Figure 32. Evident in this Figure is the typical large voltage

increase during the first few hundred hours of continuous operation, recovery

to approximately the initial voltage after shutdown, and eventual stabiliza-

tion at a voltage level characteristic to that particular electrode. For

Cell 2A, the "stable" voltage was approximately 2.4 volts and for 2B, the

stable voltage was approximately 2.0 volts.

5.3.2 Energy Requirements

The energy requirements of the system at various operating conditions

and as a function of time, are shown in Figure 33. The lower curve shows

the energy per kilogram of oxygen required by the electrolysis modules. The

increment added for the power controllers is represented by the middle curve

and shows a 70-75 percent conversion efficiency for these devices. The upper

curve is the total energy expended per kilogram of oxygen and includes accessory

input for solenoid valves, light bulbs, control logic circuits, and the electro-

lyte pump.

Module performance degradation at 3.53 kg/day showed a rate of

approximately 5 percent with Module 1 included and only 2 percent without

Module 1. Performance degradation rate at 4.55 kg/day was not substantially

different from the 3.63 kg/day rate. However, the specific module energy

consumption was approximately 5 percent higher. Module energy requirements
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were lowest for orbital operation and no performance degradation was

observed. Higher total energy requirements during orbital operation

resulted because the system had not been optimized for this mode of

operation, i.e., a number of accessories had to be left energized during

the off-periods which would not be required in a properly designed space-

craft system.

There was no requirement in the test to accurately monitor accessory

power usage. The power contributions of the individual accessory groups

shown in Figure 33 are therefore approximate, based on panel meter readings
for the 28, 15, and 5 VDC power supplies and merely a "best" estimate for the

115 VAC electrolyte pump motor.

Test data were used to determine the efficiency of the power controllers

in converting constant 30 VDC input power to constant current output. The

data consisted of weekly average module current/voltage values and 30 Vdc

power supply panel meter readings of input voltage and current. The com-

puted power conversion efficiency decreased gradually during the test from

early values of 73-75 percent. The power supply panel meters were recalibra-

ted at the conclusion of test and a 4 percent increase in ammeter readings

was found. Applying this correction to the final power conversion efficiency

values results in corrected values of 73-75 percent. This indicates that

there was no significant change in this efficiency as a function of time.

5.3.3 Current Efficiency

Current efficiency is a measure of the percentage of the applied

electrolysis current which produces oxygen and hydrogen. The inefficiency

is that portion of the applied current which is shunted through the electro-

lyte manifolds to adjacent cells and does not, therefore, produce the desired

electrolysis reaction. The magnitude of the shunt current is a function of

the electrical resistance of the shunt path, which is fixed by the cell

geometry and the cell voltages, which vary with input current.
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Current efficiencies computed from 02 and H2 wet test meter data

and module currents on a weekly average basis are shown in Figure 34. The

module energy requirements shown previously in Figure 33 are co-plotted to

illustrate the voltage effect on efficiency. Note that at fixed input current

corresponding to a Faradaic 3.63 kg/day of oxygen production, the current

efficiency varies inversely with energy required per kilogram of oxygen, i.e.,

for a fixed oxygen rate, the current efficiency decreases as voltage increases

due to the increase in shunt current. It is also evident that, as would be

expected, increasing the oxygen output to 4.55 kg/day increases the current

efficiency. This results from the fact that the 25 percent increase in total

current results in only a 5 percent increase in cell voltages.

5.3.4l Orbital Operation

A significant result of the test program was the simulated orbital

operation of the system for one week of the test (weeks 15-16). The external

timer provided a simulated orbit duty cycle of 55 minutes on (sunlit portion

of the orbit) and 39 minutes off (shadow portion of the orbit). Duty cycles

for high/low/off were presented in Figure 29. During the one-week orbital mode

test period, 120 orbits were simulated, thereby subjecting the system auto-

matically to 120 changes from zero up to maximum oxygen production and 120 step

changes from low mode current to zero. During the off period, nitrogen purge

was automatically provided to maintain gas/liquid differential pressure in the

modules and power to the accessories and safety circuits was maintained. No

module performance degradation during the orbital period was evident. This

result is significant in that it is at least a preliminary indication that

substantially more stable performance in orbital mode than in continuous mode

could be expected for a long duration mission.

The orbital test period successfully demonstrated the instant start/

stop capability of the circulating electrolyte type electrolysis cells, a

capability which is necessary for orbital operation. A typical orbit cycle

is presented for Module 1 in Figure 35, using one-minute data from the MDAC

data logger. Complete plots are given in Appendix A.
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5.3.5 Gas Bubbler and Analyses

Oxygen and hydrogen gases generated by the system were vented

during the test to separate bubblers, each containing approximately 300 cc

of water. Because the system was operated slightly above ambient tempera-

ture, the oxygen dewpoint was above ambient, and water condensed in the

oxygen bubbler as the gas cooled. This necessitated periodic removal of

liquid to maintain the 300 cc bubbler liquid volume. The hydrogen gas

dewpoint was always below ambient and resulted in evaporation of water

from the hydrogen bubbler. This required periodic addition of water to

maintain the initial 300 cc bubbler liquid volume.

Samples were taken from each bubbler once or twice a month during

the test for pH measurement by MDAC personnel. The results of the analyses

are given in Table 8. The initial pH of the water in both bubblers is

assumed to have been approximately 7.0. This assumption implies that an

initial, large increase in pH occurred during the first two weeks of the

test. The pH in both bubblers leveled off after this period with only

minor variations apparent for the remainder of the test. The fact that

liquid was periodically removed from the oxygen bubbler and water periodi-

cally added to the hydrogen bubbler complicates the assessment of these pH

data in determining KOH carryover in the generated gases.

The following possible interpretations of the bubbler analyses

data appear most reasonable.

Oxygen Bubbler. A total of 1430 cc of liquid was removed from

the oxygen bubbler during the course of the test. Assume that, as a worst

case, all of the liquid removed was at the highest pH and that the pH in the

bubbler was being maintained by continued carryover of KOH in the generated

gas. The amount of KOH contained in 1430 cc of water at pH = 12 is approxi-

mately 0.8 gm. This would represent a KOH carryover rate of 5 mg/day based

on 160 days of operation. The most probable source of this small amount

of KOH would be residue left in the gas passages and manifolds of the cell

spacers when the module parts were cleaned and re-assembled at LMSC.
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Table 8

Gas Bubbler Analysis Results

pH
Date 02 Bubbler

9 November 1971

15 November 1971

22 November 1971

23 December 1971

18 January 1972

31 January 1972

15 February 1972

13 March 1972

12 April 1972

25 April 1972

10.50

10.60

11.40

10.70

11.80

11.85
11.60

11.05

10.50

10.50

H2 Bubbler

9.30

9-25

9.75

9-45
9.50

9.30

8.70

8.70

8.80

8.90
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Hydrogen Bubbler.- The hydrogen gas, being generated very dry, would

be expected to have less tendency than the oxygen to carry over any NOH residue

left in the gas manifolds. Assume that all liquid removed from the hydrogen

bubbler was, at a worst case, at a pH of 10. A total of 250 cc of liquid was

withdrawn for pH measurement during the test. This is equivalent to 1 .4 mg

of KOH or 0.009 mg/day carryover rate. All of the additions of water to the

bubbler to replace that lost by evaporation are assumed to have been distilled

water (pH 7). Since these additions always brought the liquid volume back

to the original level, they could not have contributed to any change in bubbler

pH unless the water used was contaminated.

5-3.6 Gas Analysis Data

Samples of both the product oxygen and hydrogen streams were taken

periodically for analysis by MDAC personnel. The analysis data are shown in

Table 9. Sampling and analysis techniques were not indicated nor were limits

of detectability given. On the hydrogen side, 85 percent of the samples showed

02 present at less than 0.1 percent, which is in agreement with the results of

analyses conducted at LMSC during acceptance testing. The organic contaminant

detected in Tests 3 and 4 was identified as mineral oil. Its presence resulted

from using new solenoid valves which had not been cleaned. No further evidence

of this contaminant was apparent in the December samples, indicating that the

valves had purged clean over this period of time.
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TABLE 9

PRODUCT GAS SAMPLE DATA

Date

3 Nov 71

11 Nov 71

24 Nov 71

8 Dec 71

23 Dec 71

6 Jan 72

19 Jan 72

2 Feb 72

15 Feb 72

1 Mar 72

15 Mar 72

29 Mar 72

12 Apr 72

25 Apr 72

2 %

N 1

N

N

N

0.05

N

0.5

N

N

N

N

N

N

Product

H2'

N

N

N

N

N

N

N

N

N

N

N

N

N
N

No contaminants detected denoted thus "N".
2 Orga ic e k at 14. min tes RO estimated

2 Organic peak at 24.5 minutes. ROM estimated
per million.

3 Very small organic peak at 24.5 minutes.

4 Organic peak at 29.5 minutes. ROM estimated

5 No discernible organic peak detected.

at 1 to 2 parts

at 1 part per million.

rNj
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Test
Number

1

2

3

4

5

6

7
'8

9
10

11

12

13

14

02
Organic

N

N

2

3

5

N

N

N

N

N

N

N

N

N

N2 %

N

N

1.75

0.4

N

0.71

0.3

0.65

N

0.2

N

0.1

N

N

Product

02 %

N

N

0.15

0.07

N

0.13

0.04

N

N

N

N

N

N

N

H2

Organic

N

N

2

14

5
N

N

N

N

N

N

N

N

N

NOTE: 1



5.4 FAILURE ANALYSIS

5.4.1 Operational and Failure Summary

The operational status of the system is shown in Figure 36. There

were only 10 days (24-hour periods) out of the 182 day total when the system

was not operational. All of these days occurred on weekends with no one in

attendance or while awaiting parts. This represents 45 percent of the total

cumulative downtime. A major portion of the remaining downtime involved

diagnosis and troubleshooting of electronics problems. A failure and shut-

down summary is given in Table 10.

A total of 24 system shutdowns were identified in the test log (see

Appendix B), of which 13 are attributed to primary failure or malfunctions

and 11 to start/stop operation required for fault diagnosis and checkout of

repairs. There were, in addition, two malfunctions associated with module

electronics which did not cause system shutdown. Cumulative primary shut-

downs (modules and system) as a function of time are shown in Figure 37.

A total of Ul components either failed, for primary or secondary

causes, or malfunctioned during the test. A component was considered failed

if it had to be repaired or replaced. A component was considered malfunc-

tioning if modification to the system or operating procedure was required

for proper operation. Within these definitions, seven of the eleven compo-

nents failed and the remaining four malfunctioned.

5.4.2 Component Analysis

The components which failed or malfunctioned during the test are listed

in Table 11. They are discussed in the following paragraphs.

Nylon Fittings.- Three nylon fittings in the electrolyte loop (1/4 inch

Swagelok unions) failed by breaking in half. In each case, the fitting that

failed was being used in an off-design manner, i.e., one end of the fitting with

an O-ring against the shoulder was threaded into a 7/16-20, chamfered hole in

a plastic block. Each fitting was installed dry and tightened until visible

compression of the O-ring was observed. Failure probably resulted from stress

fatigue due to the constant pressure of the O-ring pushing against the shoulder.

All three fittings broke at the shoulder. (See Figure 38).
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Table 11

Component Failure and Malfunction Summary

Failure

No. of
Components

3

1

1

1

1

Failure Description

Broken nylon fittings.

Electrolyte pump motor stopped.

Temperature sensor failed open.

Module 3 current regulator failed
to max current.

No current to Module 4B.

Cause

Incorrect use with O-ring
seal.

Leakage of KOH onto armature
after a fitting failure above.

Damage to thermistor during
assembly.

Not determined.

Loose coax connector.

Malfunction

No. of I
Components 0(

1

No. of
ccurrences Malfunction Description

8 Master shutdown Chip Z1 emitting
false shutdown signals.

Approx. False on commands and no response

to manual on/off commands.

1 Orbital operation pressure decay.

1 Solenoid valves de-energized.

Cause

Missing capacitor
allowed intermittent
noise to reach chip.

Not determined.

Not determined.

Momentary power
supply voltage
decay.
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These failures represented a design deficiency. The corrective

action that was taken after the third failure occurred was to replace all

nylon fittings which were being used with O-rings with Teflon-coated

stainless steel fittings. No further escape of KOH from the electrolyte

loop occurred after this action.

Electrolyte Pump Motor.- Failure of the electrolyte pump motor

was a secondary failure resulting from one of the nylon fitting failures

noted above. KOH leaked onto the motor armature causing an internal short.

The corrective action consisted of replacing the motor with a spare.

Temperature Sensor.- The temperature sensor on Module 3 failed

open which resulted in an erroneous high temperature signal. This was

the second sensor to fail: sensor EL #l1 failed during checkout prior to

the §tart of the test. Cause of both failures was an incorrect assembly

procedure. The sensor probes were prepared by epoxy-plotting the small

(1/32" dia.) thermister beads in 3-inch long, 1/4" diameter stainless steel

tubing. The positive meniscus which was formed by this process was then

filed off. The thermistors were supposed to be positioned just inside the

end of the tubes. However, inspection of the two units which failed indi-

cated that in these two cases, the bead had been exposed and probably

scored or cracked by the file. The corrective action was installation

of spares.

Current Regulator.- Module 3 current regulator failed to high

current, allowing maximum current as limited by the external power supply

(100 A) to be applied to the module. A 30-Amp breaker opened to prevent

sustained high current. Cause of failure was not determined. Corrective

action consisted of installing a spare regulator card.

Coaxial Cable Connector. A loose coax connector to Module 4B

resulted in no current to this module. This was a secondary failure

resulting from a problem in the module electronics that is discussed in

a later paragraph. The connector is of a type which is fragile and not

designed for the repeated connect/disconnect operations to which it was

subjected. Corrective action consisted of tightening the connector.
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Master Shutdown I.C. Chip.- The malfunction of this chip (Z1 on

Card W2) consisted of random, erroneous automatic system shutdown signals.

This was an intermittent malfunction which triggered 8 automatic shutdowns

and was responsible for another 5 manual shutdowns for diagnosis, constitu-

ting a total which is more than half of all system shutdowns during the test.

Diagnosis of the problem was made difficult by its intermittent

nature. It was eventually traced to a missing capacitor which had been

included in the design of the circuit to protect against electronic noise

but which had been omitted during fabrication of the circuit card. Correc-

tive action consisted of installing the needed capacitor.

Module 4 Electronics.- Early in the test, Module 4 received several

false "on" commands while the system was shut down. The cause of the problem

was not determined at that time, but rather the procedure was changed to turn

Module 4 off on nights and weekends for the remainder of the test. For

several months, the module was turned off as scheduled by disconnecting

the coax cable which provides current to the module and allowing the

command electronics to remain active. This was a diagnostic measure to

see if the false on-command would re-occur during a shutdown. The procedure

was modified after the coax connector problem noted previously, so that

Module 4 was turned off and on with the switch and breaker. During the

last two months, there were a number of occasions when the module electronics

failed to change state, either from off-to-on or from on-to-off, when the

switch was actuated. In these instances, the breaker was used to achieve

the desired condition. It is assumed that the problems associated with

Module 4 command electronics, both the false on commands and failure to

respond to commands, were the result of a single intermittent malfunction.

The source of the problem was not identified and the only corrective action

taken was to use the module breaker to effect the required commands.

Orbital Operation.- An automatic shutdown, caused by low system

pressure, occurred during the first segment of the orbital simulation because

the startup sequence had not been fully optimized. The numerous off-on cycles

during the orbital simulation made the problem evident. The low gas pressure
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was found to occur at the point in the off-to-on sequence where nitrogen

purge was turned off and current was applied to the modules simultaneously.

With a momentarily no-flow condition existing, the pressure decay could have

been caused by leakage from the differential pressure controllers, although

this has not been verified. Corrective action consisted of adding a ten-

second electronic delay to the nitrogen purge off-signal to maintain nitrogen

flow until gas production was underway.

Solenoid Valves.- On one occasion, the nitrogen purge and vent

solenoid valves de-energized while the system was operating. Since only

one vent had been provided by MDAC, the generated oxygen and hydrogen and

the nitrogen purge were being mixed in the single vent when the valves

opened. The problem was attributed to a momentary voltage decay of the

30 Vdc power supply. The power supply voltage was put on a strip chart

monitor for diagnosis but the problem never re-occurred. As a safety

measure, MDAC installed a second vent. No corrective action was taken

on the system itself.
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PRECEDING PAGE BLANK NOT FILMED

Section 6

RELIABILITY ANALYSIS

The 182-Day Test of the water electrolysis system was intended to be

an engineering evaluation test; hence, a formal reliability program was not

required by the contract. Other than the reliability inherent in good

engineering judgment, there was no attempt to invoke the reliability principles

that would be normal for a flight article. The hardware itself was refurbished

from that used in an earlier development test. No attempt was made to conduct

Parts application studies, failure mode and effects analyses, quantitative

reliability analysis, or design reviews. Similarly, there was no formal

quality assurance program performed either during the original fabrication,

the refurbishment, or the test itself. Most of the electronic components

used were commercial off-the-shelf, received without acceptance testing.

The mechanical components were either standard commercial or specially fabri-

cated devices produced in a laboratory environment without quality control

procedures.

The purpose of the program, to conduct a 182-day feasibility test, was

achieved under the controlled conditions evidenced in other sections of this

report. However, since quality assurance procedures were not required, there

was neither formal failure documentation nor Material Review Board disposition

of the failed hardware. With these limitations, the brief failure analysis

that follows is more inductive than deductive. Since the preceding failure

analysis in Section 5.4 of this report is related more to the general problems

encountered during test operation than to the specific diagnosis of the failed

hardware, reference was made to the Test Log in Appendix B for this reliability

analysis.

Of the several shutdowns listed in the Appendix, only one instance can be

found of a failure due to incorrect design. This was the use of nylon fittings

in the KOH lines. A more recent program for the design of an electrolysis

system (intended for operation in a Space Station) provided that fittings

such as the above would be stainless steel with areas in contact with the

electrolyte coated with Teflon. Double O-ring seals of ethylene propylene

Preceding page blank 
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were also specified. It is reasonable to assume that a design review of the

182-Day Test system would have revealed the improper use of nylon.

It is noted that the causes of two failures, viz., a short in a current

regulator card and the false start-up of Module 4, were not determined.

Both failures appear to have been related to the electronics. It is unlikely

that these failures are related to a design deficiency since, in both cases,

similar circuits are to be found in other modules. It is much more reasonable

to assume that these problems were either the result of a part failure or of an

error during fabrication. Reliability parts application, together with con-

trolled receiving inspection, would have prevented the first alternative;

quality control procedures during fabrication would prevent the second.

A recurrent problem with a temperature sensor, noted during the initial

checkout as well as during the test, was traced to an incorrect manufacturing

procedure, as described in Section 5.4.2. Normal inspection methods for en-

capsulated devices would have detected the fault. Similarly, the cause for

nine of the automatic shutdowns, eventually traced to the missing capacitor

on the master shutdown I/C, would have been prevented by normal inspection

and box level acceptance testing. At the very least, replacement with a

spare module would have restricted the number of shutdowns to one. The failure

of the electrolyte pump motor at Day 89 and the module 4B connector failure

at Day 101 were both secondary failures as indicated in Section 5. The KOH

leak in the first case and the repeated disconnect-connect cycles of the

connector in the other case would have been precluded in an end-item intended

for flight use.

From a reliability viewpoint, this water electrolysis system for producing

oxygen appears to be entirely feasible. No problems were seen that could not

be prevented by invoking the standard techniques of reliability and quality

assurance programs that are normally found in flight articles. This conclusion

is based not only on the 182-Day Test, but also on the later programs for

water electrolysis systems in which the Reliability Organization participated.
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Failure mode and effects analyses parts application, maintainability analyses,

and fault detection/isolation analyses have been performed in these later

programs, indicating that high reliability systems with a minimum life of
two years are entirely within the present state-of-the-art.(6 ) (7)
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Section 7

SAFETY ANALYSIS

A safety review of the Electrolytic Oxygen Generator was presented to

the UISC Space Systems Division Safety Review Board prior to delivery of

the hardware to the MDAC test site. Based on the data presented, the Board

deemed adequate the safety considerations which were being taken in the

program and the design safety features which were incorporated in the

system. They recommended that the interface nitrogen supply pressure

be noted daily by the resident ILSC representative to assure that an

adequate supply would be available in case of an automatic safety shut-

down.

The test results indicated that three potentially hazardous conditions

occurred during the test program. In each case, a modification in equip-

ment or test procedure was accomplished to prevent re-occurrence of the

condition.

In one case, a system malfunction resulted in opening of the nitrogen

purge and vent solenoids valves while the system was operating. This

resulted in mixing of the product hydrogen and oxygen with nitrogen purge

in the single vent which had been provided by MDAC. Only one vent had been

provided in spite of a strong recommendation by 140SC before the start of the

test that two vents be provided for safety purposes. After the system mal-

function which allowed mixing of the product gases in the single vent, MDAC

installed the second vent to preclude reoccurrence of this problem.

The second potentially hazardous condition occurred as the result of

improper use of nylon fittings in the potassium hydroxide electrolyte loop.

Fitting failure on three occasions allowed the electrolyte to escape into

the system enclosure. This problem was corrected by installing Teflon-

coated stainless steel fittings as replacements.

The third condition which could have been potentially unsafe was the

occurrence of false "on" commands to Module 4 during a period when the system

was shut down. No attempt was made to correct the problem, but rather, the

test procedure was modified to require that Module 4 be turned off on nights

and week ends. 105 Pcedin agbnand week ends. ~~~~Preceding page blank1
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Section 8

INTERFACE REQUIREMENT FOR SPACECRAFT APPLICATION

8.1 ELECTROLYSIS SYSTEM CONFIGURATION

The first consideration in adapting the circulating electrolyte type

of electrolysis system to spacecraft application is an appropriate maintenance

concept which would preclude breaking into the electrolyte circuit for any

maintenance or repair tasks. This could be achieved by configuring the system

to contain individual, self-contained hydraulic assemblies with no external

electrolyte connections. The optimum size and number of these individual

assemblies could then be selected for the particular crew and cabin leakage

makeup requirements, and spares could be provided to meet the particular

reliability requirement. An individual electrolysis module assembly is shown

conceptually in Figure 39. The appropriate number of these assemblies,

with sealed covers, would be installed with quick disconnects in a cabinet

in the spacecraft, as shown in Figure 40. A failed module could be unplugged

from the cabinet and replaced with a spare.

Also shown in Figure 40 are replaceable modular electronics assemblies,

one for each electrolysis module. The 182-Day Test results, indicating that

a majority of the system shutdowns were associated with electronics problems,

emphasize the need for individual electronics assemblies. These individual

electronic units should be provided with voting circuits on all critical

functions and should utilize the spacecraft computer system for additional

fault diagnosis. Equipment should also be provided for checkout of an elec-

tronics module to isolate the problem source in the event of an electrolysis

module shutdown.

8.2 SYSTEM INTERFACES

The following paragraphs describe the system interfaces required for

spacecraft use. The interface descriptions are necessarily qualitative where

they depend on spacecraft requirements rather than electrolysis system

requirements.

Preceding page blank
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Figure 40 Spacecraft Electrolysis System Configuration
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8.2.1 Power Supply

The power conditioners in the system should be designed to utilize un-

regulated solar array power to minimize power penalty. Regulated 28 Vdc would

be required for the electronic logic circuits and accessories.

8.2.2 Coolant Supply

The electrolysis system cabinet would contain a fixed cold-plate through

which spacecraft coolant would flow continuously. Each electrolysis module

would contain a contact heat exchanger to mate with the cold plate by contact

only (no fluid inter-connections).

8.2.3 Water Supply

The system would utilize the processed water from the spacecraft water

and waste management system. Ionic contaminants in the water would be removed

in an ion-exchange canister mounted inside the electrolysis system cabinet.

8.2.4 Nitrogen Supply

Nitrogen supply would be required by the electrolysis system for system

pressurization and safety shutdown purge.

8.2.5 Oxygen Discharge

Oxygen produced in the electrolysis modules could be discharged directly

to the spacecraft cabin if no oxygen accumulator is provided in the cabin.

8.2.6 Hydrogen Discharge

Hydrogen would be discharged to an accumulator for subsequent use in

the spacecraft CO
2
reduction system.

8.2.7 Bubble Separator Discharge

Gas removed from the feed water in the electrolysis modules would be

discharged directly to the spacecraft cabin. The composition of this gas

would be expected to be oxygen and nitrogen.
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Section 9

CONCLUSIONS

This program was successful in demonstrating the soundness of the basic

concept of circulating electrolyte water electrolysis as evidenced by the

following:

o No cell or module failures of any kind occurred during the test

program.

o All critical functions, i.e., temperature control, water balance

control, phase separation, and gas generation rate control, were

maintained throughout the test.

o The system successfully operated at all of the conditions planned

for it in the test program.

The capability of the system to operate in an orbital (on/off) mode was

demonstrated. The scheduled period of operation in this mode was too brief for

an exact determination of long-term performance benefits, but the lack of any

measurable performance degradation in the one-week period is indicative of

improved performance stability to be gained from orbital operation in a

spacecraft application.

Control logic for this system is highly developed as demonstrated by the

completely "hands-off" operation, the automatic start/stop feature, and the

automatic safety shutdown capability.

Problems encountered during the test program were prfimarily due to

electronics malfunctions which were difficult to diagnose because they were

intermittent, but simple to correct once they had been identified. All the

problems fell in one or more of the categories of (1) design deficiency due

to the accelerated nature of the refurbishment program, (2) commercial compo-

nent failure; no high reliability components were used, (3) inadequate quality

control due to the development nature of the program. In no case was a problem

identified which indicated an inherent deficiency of the system concept.
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Section 10

RECOMMENDATIONS

Further development of the circulating electrolyte water electrolysis

system, which is now at the prototype level, is warranted. Flight proto-

type hardware development will be necessary to advance this system concept

to flight hardware readiness. The following areas require development

emphasis to achieve this goal:

o Improve electronics. Convert from commercial to high-reliability

flight-type electronic components. Increase quality assurance effort

in circuit design and fabrication.

o Improve power conditioning. Redesign the electrolysis power condi-

tioning units to achieve higher conversion efficiency.

o Incorporate Modular Maintenance Concept. Eliminate external electro-

lyte plumbing by redesigning the system to contain replaceable

electrolysis module assemblies, each having completely internal

manifolding of electrolyte.

o Incorporate Zero-Gravity Hardware. Utilize zero-gravity compatible

components in the electrolysis module assemblies.

In future programs where testing to determine long-term performance

characteristics of prototype or development grade hardware is an objective,

the duration of the checkout run prior to start of the actual test should be

increased. The experience with the NASA-IMSC Electrolytic Oxygen Generator

in the 90-Day Manned Test and with the refurbished and modified unit in the

182-Day Test substantiates this need. In the 90-Day Manned Test, after 100

hours of checkout testing, 12 of a total of 14 system component malfunctions

became apparent in the first 22 days of the test. In the 182-Day Test, after

300 hours of checkout testing, the problems associated with 11 of the 13

primary failures/malfunctions first occurred in the first 16 days of the test.

These results indicate that as much as 30 days of pre-test checkout would

be reasonable to assure a successful long-term test.

Preceding page blank 
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LIBRARY CARD ABSTRACT

The NASA-LMSC Electrolytic Oxygen Generator, based on the circulating

electrolyte water electrolysis concept, was refurbished and improved after

the NASA-McDonnell Douglas 90-Day Manned Test and subjected to a 182-Day

bench test. The system operated successfully for 160 cumulative days,

demonstrating the soundness of the basic concept and the capability of

orbital operation, long-term operation at design maximum oxygen output,

and automatic, completely "hands-off" operation. Specific design improve-

ments were recommended as a result of the test experience to advance the

concept to flight worthiness for application in a manned spacecraft

regenerative life support system.
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APPENDIX A

PERFORANCE PLOTS

Performance data, voltages, currents, pressures and temperatures were

obtained from the MDAC data logger. The plots of these data contained herein

are the following:

Figures A-1 through A-54.

Daily Performance Data. Data plotted at 4-hour intervals; one week to

a page.

Figures A-55 through A-82

Module Summarwy Performance Data. Data plotted at 1-day intervals, highest

and lowest reading for each 24-hour period; one month to a page.

Figures A-83 through A-86

Module Temperature History. Data for Modules 1, 2, and 3 plotted

for a one-week period.

Figures A-87 through A-91

Orbital Simulation Data. Data plotted at 10-minute intervals for 5 hours

each day.

Figure A-92

One-Minute Orbital Data. Data plotted at one-minute intervals through

one complete orbit for Module 1.

Numbers shown on these Figures along the bottom margin, viz. 3, are

referenced in the Condensed Test Log in Appendix B. An X is shown along the

bottom margin for periods when the MDAC data logger was not operating and

there were no data available to plot.
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Appendix B

CONDENSED TEST LOG

Pertinent information extracted from the official I4SC test log for

the 182-Day Test is contained in this section. This condensed log documents

the significant events and actions of the test in chronological order in a

format intended to define and explain problems which occurred. Reference

numbers shown in the last column of the log appear also on Figure B-1 which

illustrates the system status on a day-to-day basis. Notations for shutdowns

are as follows:

X System shutdown for diagnosis, troubleshooting or repair;

or due to a secondary failure.

XX System shutdown due to a primary failure. Shutdowns so

noted are discussed in detail in the Failure Akalysis,

Section 5.4 of the text.

B-1



Ti Le. Logbook Zntry/'vecnt Diugnos ta/Coiment
2hutdown Reference

A;uto lManual. Number

1 12O0

1718

2 161o

3 08145

8 --

9 1114

14 0745

Started 182-Day Test.

Problem noted in external timer.
Found bad component and replaced.

Made further adjustment of external
timer to get close to desired 100-
minute interval.

Further adjustment of external timer.

No data printout.

Oxygen gas sample taken.

System shutdown, cause unknown at this
time.

1159 Unsuccessful auto restart.

1201

1204

1207

1213

Unsuccessful auto restart.

Unsuccessful auto restart.

Auto restart with pump 2

Manual shutdown and switch

Test procedure.

No effect on system operation.

No effect on system operation.

No effect on system operation.

MDAC printer malfunction.

Test procedure.

Cause was traced later in the test to
a missing capacitor in the master
shutdown circuit which allowed inter-
mittent noise spikes to trigger the
shutdown I.C. Refer to Day 127.

Electrolyte pump did not reach full
speed in the required 10 seconds.

Same as above.

Sere as above.

For diagnosis.

to Pump l#1. For diagnosis.

1214 Auto restart.

1455 Turned override on and swithced to
Pump -,,2 then back to Pump #1. A few
gas bubbles were observed leaving the
pump. Override turned off.

15 0850 Drained 25 cc from hydrogen and oxygen
bubblers for pH measurement.

16 1030 Oxygen and hydrogen gas samples taken.

1443 System shutdown with high oxygen pres-
sure light on. Checked discharge gas
line with gauge and nitrogen flow -
no obstruction apparent. System put in
manual standby with pump running over-
night.

17 0800 System shutdown from standby with low
oxygen pressure light on.

1100 Installed pressure gage in 02 line.

1112 System restarted in manual mode -
switching manually high to low current
mode every 5 minutes for one hour.

1216 Switched to automatic mode.

1500 Oxygen and hydrogen samples taken.

1638 Shut system down to install a pressure
transducer in 0 line and connect to
strip chart recorder.

1644 Plastic fitting on Module #1 electro-
lyte outlet from flowmeter broke. In
removing fitting, broke a wire on
current indicating light. Resoldered
wire. Left system in manual standby
overnight awaiting parts from ULISC.

18 1500 Replaced broken fitting and installed
new solenoid valves.

1540 Auto restart.

1605 Shutdown to check if new solenoid
valves work properly.

1606 Auto restart

2153 System shutdown with low oxygen
pressure light on.

19 0915 Put system in manual standby. Review
of data from shutdown indicated
Module 4 had received several false

on"cor.mar.ds after shutdown at 2153
on Day 18.

21 '930 Removed 20 cc frcm each bubbler for
pH ana.lysis.

1003 Actuated auto restart.

1730 Mi'nunl shutdown rper Test Comnittee
instructions.

System on line-no repairs.

For diagnosis.

Test procedure.

Test procedure.

Cause was later attributed to inter- XX
mittent electronic noise. See
reference 2.

Electronic noise. See Reference 2. XX

For diagnosis.

For diagnosis.

System on line.

Test procedure.

For diagnosis.

Mechanical failure.

See Reference 5.

System on line.

Test procedure

System on line

Electronic malfunction. See Reference XX
2.

System was left in standby mode over
week-end until false on-co;:mands to
Module 4 could be investigated.

Test procedure.

System on line.

Unattended operation was deemed advis-
able until Module 4 problem could be
resol:v'd.

B-2
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Test

22

Time

803

1021

Logbook Entry/Event

Actuated auto start.

Shut system down to replace I.C.
chips Z1 and Z2 on Card W3 and
Z5 on Card W2 and to check wiring
to Module 0; current regulator card.

1053 Actuated auto restart.

1703 Module t4 circuit breaker end switch
turned off.

28 840V Removed 30 cc from each bubbler for
pH analysis.

30 1110 Gas samples taken. INoted organic
contaminant.

37 0206 System shutdown with low oxygen pres-
sure light on. system put in manual
standby overnight.

38 1000 Re-installed I.C. chips removed on
Day 22.

1005 System startup in manual mode for
fault diagnosis.

1125 Increased low 02 pressure limit from
1.3 to 1.5 psig. Ran tests injecting
gas into electrolyte pump to deter-
mine if pump cavitation could cause
low pressure shutdowns.

Diagnosis/Commr.ent

System on line.

For diagnosis. There was no direct
evidence of failure of these chips.
They were replaced and put on acceler-
ated life test at U!?C where no indi,
cation of malfunction was observed.

System on line.

Test Committee decision to turn Module
:4 off nights and weekends when no one
in attendance for remainder of test. No
further attempt to correct Module j`4
false "on"-comnand problem.

Test procedure.

Contaminant later traced to mineral oil
in solenoid valves installed on Day 18.

See Reference 2.

Jhutdawn Reference
Auto Mulunul 1w:iber

X

XX

For diagnosis.

For diagnosis.

For diagnosis. It was later determined
that electronic noise was causing shut-
down tRef. 2). Pump tests indicated
that pump was not causing the shutdowns.

1643

39 0752

1645

43 1630

44 0753

1000

Actuated auto restart.

System shut down. Low pressure
light on.

Installed 4 test points to nonitor
electronics. Strip chart recorder on
Test Point rl.

Modified shutdown logic so that low
pressure light comes on only if it
receives the primary shutdown sig-
nal. Mode operational check ok.

Actuated auto restart.

Module 1A current drifted from 12.4
down to 130.5 then back to 12.35.

Module 1A current drift again noted.

Hydrogen and oxygen gas samples
taken.

1500 8-channel strip chart recorder re-
ceived from DISC. All 4 test points
were connected.

47 0858 System shutdown. ,High oxygen pressure
light on. Put system in manual stand-
by over the weekend.

49 1402 Oxygen pressure transducer signal
picked up at circuit card and
connected to 8-channel recorder.

1521 Actuated auto restart.

50 0755 System shut down manually because no
flow was observed in gas bubblers.

1020 System started in manual mode and
operated onlY while attended for
remainder of the day.

1401 Added monitor of 30V, 24V and 5V
power supply voltage to 8-channel
recorder.

1509 System put in manual standby over-
night.

51 0839 Actuated auto restart.

System on line.

Electronic noise. See Reference 2.

For diagnosis.

Diagnostic aid.

System on line.

No effect on system operation.

No effect on system operation.

Test procedure.

For diagnosis.

Electronic noise. See Reference 2.

For diagnosis.

System on line.

Interface power supply malfunction.

For diagnosis.

For diagnosis. At this tire, the re-
corder was monitoring 4 electronic
test points, the C) pressure trans-
ducer and the three power supplies.

System on line. TMAC installed an
additional vent to prevent a safety
hazard if the ,admlenction (Hefr. o10)
re-occurs.

B-3
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Time Logbook Entry/Lvent Di asnosis/Coment
UShutdown Reference

Auto Manual Number

56 0755

1419

58 0756

Module 3B current readings erratic.

Module 3B current readings erratic.

Module 3B current readings erratic.

59 1008 Gas sa-plos taken.

1418 Removed 27 cc fron oxygen bubbler and
25 cc from hydrogen bubbler for pH
analysis.

85 1355 Removed 25 cc from each bubbler for
pH analysis.

86 1400 Gas samples taken.

89 1434 System shutdown. Lou system pressure
light cn. Electrolyte discharge
fitting on Module 4 discharge broke.

91 1430 Replaced broken fittings and cleaned
up YOH spillage. System put in manual
standby overnight.

92 0952 Actuated auto restart.

1004 Module 3 warning temperature light on
intermittently throughout the day.

1119 System shut down manually because
pump motor was running hot. Exchanged
motors with installed spare.

1513 Actuated auto restart.

93 0747 Intermittent warning light on Module
r3 still noted.

1408 Received new pump motor from I/4SC.
Manual shutdown to replace failed
motor.

No effect on system operation.

No effect on system operation.

No effect on system operation.

Test procedure.

Test procedure.

Test procedure.

Test procedure.

Mechanical failure. Slow leak of KDE
drippned on pump motor and shorted
the hot lead to chassis ground.
Failure occurred on 3aturday with
no one in attendance. System remained
shut down until Monday.

System on line.

No effect on system operation.

Secondary failure resulting from fit-
ting failure (Reference 1). EDH had
leaked into motor armature.

System on line.

No effect on system operation.

1427

94 1402

Actuated auto restart.

System put in cyclic operating mode.

96 1837 System shutdown. Low system pressure
System put in manual standby for
remainder of weekend.

98 1400 Module 3 overtemperature light on.
System left in manual standby over-
night.

99 0845 Put insulating tape on tip of Module
,3 temperature sensor.

1021 Actuated auto restart.

100 1100 Gas samples taken.

1300 Module 3 temperature warning light
even though sensor has been taped.

1811 System shutdown. No indicator lights.
Test Point #73 on 8-channel recorder
very noisy.

101 1416 Actuated auto restart to continue
trouble-shooting. No current to
Module 4B3.

1502 Manual shutdown to investigate
Module 43 problem.

102 0941 Replaced I.C. Chip Z1 on W2.

Found loose cable on Module 4 elec-
tronics. Retightened. System restarted
to check Mod 4 current - ok.

1542 Modified card SC6 to provide 15 sec
overL.ap of nitrogen ptrge and module
current on startup. System restarted
for checkout-found wiring error.

2036 System Fat in continuous operation
overnight until wiring error on SC6
is corrected.

System on line.

Test procedure. Scheduled test
condition change.

Failure due to low pressure on cycle XX
from off to on in orbital mode.

Failure of temperature sensor.

Interim repair until replacement
sensor available.

System on line for trouble-shooting.

Test procedure.

XX

System on line for trouble-shooting.

Trouble-shooting.

Z1 was suspected of causing shut-
down (Reference 13). This has not
been verified. Refer to Day 127.

Loose cable was cause of no current
to Module 4B (Reference 14).

To correct orbital operation problem
(Reference 12).

System on line.

B-4
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Time Logbook Entry/Lvent Diagnouis/Conmrnnt
Shutdown Reference

A-Ito Manual fl iumber

103 0916 Manual shutdown to correct wiring
error on SC 6.

0955 Actuated restart-manual, continuous
mode.

1545 Swltched to auto mode. Initiated
cyclic operating mode.

110 1613 Switched from cyclic mode to
continuous mode.

113 0830 Removed 25 cc samples from bubblers
for pH analysis.

1547 Observed stall KOH leak at r3 outlet
on the flow meter.

114 1600 System shut down manually in prepara-
tion for replacement of nylon fittings
with stainless steel.

116 0o8o00 Replaced nylon fittings with Teflon-
coated stainless steel.

1139 Actuated auto restart.

120 1201 Changed high mode duty from 62 to
70 minutes.

121 1207 Changed high mode duty from 70 to
79 minutes.

122 1201 Changed high mode duty from 79 to
88 minutes.

123 0941 Changed high mode duty from 88 to
98 minutes.

124 0300 Module 3 circuit breaker tripped off.

1100 System shutdown with no indicator
lights on.

127 0940 Module 3 current regulator card
replaced with spare.

0947 System restarted for checkout and
adjustment of new regulator ceard.

1325 System shut down manually to continue
diagnosis of electronic noise problem. f
Test points were added between Pins 1
and 8, Chip Zl, Card W2. Added capaci-
tor to Chip Z1.

1545 Actuated auto restart.

130 0852 DeliberateLv induced known noise on
Z1 to verify. electronic noise as
cause of previous shutdown.

Trouble-shooting.

Trouble-shooting, system on line.

System on line in orbital mode.

Test procedure. Scheduled orbital
operation completed.

Test procedure.

System remained on line.

The leak at 1547 was caused by a
fitting failure. This was the third
such occurrance of the test.

Only fittings used with O-ring seals
were replaced.

System on line.

Test procedure. Scheduled start of ramp
to maxinum output.

Test procedure.

Test procedure.

Test procedure.

Current regulator card failed to high
current.

Electronic noise. Reference 2.

Circuit design included a requirement-
for this filtering capacitor of Z1, W2.It
was inadvertently omittea curing system
assembly at LU-UC. Lack of this filter
allowed random noise to actuate system
shutdown. Shutdarns referenced as follows
are attributed to this problem:

Day 14 Ref. 2
16 3
17 4
18 6
37 7
39 8
47 9

100 13

System on line.

Diagnosis of electronic problem was
verified.

1302 System shutdown manually to increase
amount of filtering on Z1.

1311 Actuated auto restart. System on line at naxilas output rate.

133 0755 Module 4 failed to start when actuated. Module 4 electronics problem.

134 1032 Module 4 on ohey. Started and stopped
it several times; problem of Day 133
did not reoccur.

140 1045 Removed 25 cc bubbler samples for pH Test procedure.
analysis.

142 1500 Gas samples taken. Test procedure.

154 1632 Module 4 switch not working. Module
4 turned off with breaker.

158 1630 kModule 4 switch not working again. Intermittent problem with switch.

162 Changed high mode duty from 98 to Test procedure. Scheduled five weeks
62 minutes. at maximum output completed.

B-5
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Test
Day Time Logbook Er.try/Event Diu;,nosis/Coismnent

Lhutdown Beference
Auto :Manml Number

164 1530 No data printout.

170 0754 Module 4 swatch had to be actuated
several times before it worked
properly.

1040 Bluobler samples taken for pH
analysis.

1445 Gas samples taken.

1630 Module 4 sr!tch stuck again. Used
breaker to turn module off.

171 0757 Module 4 switch still not working.
properly. Used breaker to turn
module on.

183 1100 Gas samples taken

1203 Actuated system stop switch.

MDAC data logging system failure.

Test procedure.

Test procedure.

Switch on Module 4 continues not to
work. :Jill use breaker for the re-
mainder of the test.

Test procedure.

ZID OF TEST.
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